One of the key trends in the data that shows promise is that 60% of employees globally who have interacted with robotics and AI expect positive impacts on their safety, career development, and productivity.
A combined team of bio researchers and roboticists from Brigham and Women's Hospital, in the U.S., and the iPrint Institute, in Switzerland, has developed a tiny swimming robot using human motor neurons and cardiomyocytes grown to emulate muscle tissue.
Miniature robots on the millimeter scale often lack the strength to transport instruments for endoscopic microsurgery through the body. Scientists are now combining several millimeter-sized TrainBots into one unit and equipping them with improved 'feet'. For the first time, the team was able to perform an electric surgical procedure on a bile duct obstruction experimentally with a robotic convoy.
Researchers explored how infants act purposefully by attaching a colorful mobile to their foot and tracking movements with a Vicon 3D motion capture system. The study tested AI's ability to detect changes in infant movement patterns. Findings showed that AI techniques, especially the deep learning model 2D-CapsNet, effectively classified different stages of behavior. Notably, foot movements varied significantly. Looking at how AI classification accuracy changes for each baby gives researchers a new way to understand when and how they start to engage with the world.
Jeannette and her team task the robot with tidying up a room: pick up all objects off the floor and put each object where it belongs. One of the key challenges when performing this task is determining the correct receptacle for each object.