All posts by Artificial Intelligence News -- ScienceDaily

Page 1 of 11
1 2 3 11

Quantum chips just proved they’re ready for the real world

Diraq has shown that its silicon-based quantum chips can maintain world-class accuracy even when mass-produced in semiconductor foundries. Achieving over 99% fidelity in two-qubit operations, the breakthrough clears a major hurdle toward utility-scale quantum computing. Silicon’s compatibility with existing chipmaking processes means building powerful quantum processors could become both cost-effective and scalable.

Caltech’s massive 6,100-qubit array brings the quantum future closer

Caltech scientists have built a record-breaking array of 6,100 neutral-atom qubits, a critical step toward powerful error-corrected quantum computers. The qubits maintained long-lasting superposition and exceptional accuracy, even while being moved within the array. This balance of scale and stability points toward the next milestone: linking qubits through entanglement to unlock true quantum computation.

AI-powered smart bandage heals wounds 25% faster

A new wearable device, a-Heal, combines AI, imaging, and bioelectronics to speed up wound recovery. It continuously monitors wounds, diagnoses healing stages, and applies personalized treatments like medicine or electric fields. Preclinical tests showed healing about 25% faster than standard care, highlighting potential for chronic wound therapy.

Caltech breakthrough makes quantum memory last 30 times longer

While superconducting qubits are great at fast calculations, they struggle to store information for long periods. A team at Caltech has now developed a clever solution: converting quantum information into sound waves. By using a tiny device that acts like a miniature tuning fork, the researchers were able to extend quantum memory lifetimes up to 30 times longer than before. This breakthrough could pave the way toward practical, scalable quantum computers that can both compute and remember.

This simple magnetic trick could change quantum computing forever

Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit interactions, this method uses magnetic interactions—common in many materials—to create robust topological excitations. Combined with a new computational tool for finding such materials, this breakthrough could pave the way for practical, disturbance-resistant quantum computers.

Harvard’s ultra-thin chip could revolutionize quantum computing

Researchers at Harvard have created a groundbreaking metasurface that can replace bulky and complex optical components used in quantum computing with a single, ultra-thin, nanostructured layer. This innovation could make quantum networks far more scalable, stable, and compact. By harnessing the power of graph theory, the team simplified the design of these quantum metasurfaces, enabling them to generate entangled photons and perform sophisticated quantum operations — all on a chip thinner than a human hair. It's a radical leap forward for room-temperature quantum technology and photonics.

Google’s deepfake hunter sees what you can’t—even in videos without faces

AI-generated videos are becoming dangerously convincing and UC Riverside researchers have teamed up with Google to fight back. Their new system, UNITE, can detect deepfakes even when faces aren't visible, going beyond traditional methods by scanning backgrounds, motion, and subtle cues. As fake content becomes easier to generate and harder to detect, this universal tool might become essential for newsrooms and social media platforms trying to safeguard the truth.

Scientists just simulated the “impossible” — fault-tolerant quantum code cracked at last

A multinational team has cracked a long-standing barrier to reliable quantum computing by inventing an algorithm that lets ordinary computers faithfully mimic a fault-tolerant quantum circuit built on the notoriously tricky GKP bosonic code, promising a crucial test-bed for future quantum hardware.

Quantum computers just beat classical ones — Exponentially and unconditionally

A research team has achieved the holy grail of quantum computing: an exponential speedup that’s unconditional. By using clever error correction and IBM’s powerful 127-qubit processors, they tackled a variation of Simon’s problem, showing quantum machines are now breaking free from classical limitations, for real.

Affordances in the brain: The human superpower AI hasn’t mastered

Scientists at the University of Amsterdam discovered that our brains automatically understand how we can move through different environments—whether it's swimming in a lake or walking a path—without conscious thought. These "action possibilities," or affordances, light up specific brain regions independently of what’s visually present. In contrast, AI models like ChatGPT still struggle with these intuitive judgments, missing the physical context that humans naturally grasp.

Half of today’s jobs could vanish—Here’s how smart countries are future-proofing workers

AI is revolutionizing the job landscape, prompting nations worldwide to prepare their workforces for dramatic changes. A University of Georgia study evaluated 50 countries’ national AI strategies and found significant differences in how governments prioritize education and workforce training. While many jobs could disappear in the coming decades, new careers requiring advanced AI skills are emerging. Countries like Germany and Spain are leading with early education and cultural support for AI, but few emphasize developing essential human soft skills like creativity and communication—qualities AI can't replace.

Quantum breakthrough: ‘Magic states’ now easier, faster, and way less noisy

Quantum computing just got a significant boost thanks to researchers at the University of Osaka, who developed a much more efficient way to create "magic states"—a key component for fault-tolerant quantum computers. By pioneering a low-level, or "level-zero," distillation method, they dramatically reduced the number of qubits and computational resources needed, overcoming one of the biggest obstacles: quantum noise. This innovation could accelerate the arrival of powerful quantum machines capable of revolutionizing industries from finance to biotech.
Page 1 of 11
1 2 3 11