USC researchers built artificial neurons that replicate real brain processes using ion-based diffusive memristors. These devices emulate how neurons use chemicals to transmit and process signals, offering massive energy and size advantages. The technology may enable brain-like, hardware-based learning systems. It could transform AI into something closer to natural intelligence.
More screen time among children and teens is linked to higher risks of heart and metabolic problems, particularly when combined with insufficient sleep. Danish researchers discovered a measurable rise in cardiometabolic risk scores and a metabolic “fingerprint” in frequent screen users. Experts say better sleep and balanced daily routines can help offset these effects and safeguard lifelong health.
Researchers at Tsinghua University developed the Optical Feature Extraction Engine (OFE2), an optical engine that processes data at 12.5 GHz using light rather than electricity. Its integrated diffraction and data preparation modules enable unprecedented speed and efficiency for AI tasks. Demonstrations in imaging and trading showed improved accuracy, lower latency, and reduced power demand. This innovation pushes optical computing toward real-world, high-performance AI.
A wireless eye implant developed at Stanford Medicine has restored reading ability to people with advanced macular degeneration. The PRIMA chip works with smart glasses to replace lost photoreceptors using infrared light. Most trial participants regained functional vision, reading books and recognizing signs. Researchers are now developing higher-resolution versions that could eventually provide near-normal sight.
Researchers at the University of Surrey developed an AI that predicts what a person’s knee X-ray will look like in a year, helping track osteoarthritis progression. The tool provides both a visual forecast and a risk score, offering doctors and patients a clearer understanding of the disease. Faster and more interpretable than earlier systems, it could soon expand to predict other conditions like lung or heart disease.
Our everyday GPS struggles in “urban canyons,” where skyscrapers bounce satellite signals, confusing even advanced navigation systems. NTNU scientists created SmartNav, combining satellite corrections, wave analysis, and Google’s 3D building data for remarkable precision. Their method achieved accuracy within 10 centimeters during testing. The breakthrough could make reliable urban navigation accessible and affordable worldwide.
Diraq has shown that its silicon-based quantum chips can maintain world-class accuracy even when mass-produced in semiconductor foundries. Achieving over 99% fidelity in two-qubit operations, the breakthrough clears a major hurdle toward utility-scale quantum computing. Silicon’s compatibility with existing chipmaking processes means building powerful quantum processors could become both cost-effective and scalable.
Caltech scientists have built a record-breaking array of 6,100 neutral-atom qubits, a critical step toward powerful error-corrected quantum computers. The qubits maintained long-lasting superposition and exceptional accuracy, even while being moved within the array. This balance of scale and stability points toward the next milestone: linking qubits through entanglement to unlock true quantum computation.
A new wearable device, a-Heal, combines AI, imaging, and bioelectronics to speed up wound recovery. It continuously monitors wounds, diagnoses healing stages, and applies personalized treatments like medicine or electric fields. Preclinical tests showed healing about 25% faster than standard care, highlighting potential for chronic wound therapy.
Researchers at UNSW have found a way to make atomic nuclei communicate through electrons, allowing them to achieve entanglement at scales used in today’s computer chips. This breakthrough brings scalable, silicon-based quantum computing much closer to reality.
While superconducting qubits are great at fast calculations, they struggle to store information for long periods. A team at Caltech has now developed a clever solution: converting quantum information into sound waves. By using a tiny device that acts like a miniature tuning fork, the researchers were able to extend quantum memory lifetimes up to 30 times longer than before. This breakthrough could pave the way toward practical, scalable quantum computers that can both compute and remember.
A research team has created a quantum logic gate that uses fewer qubits by encoding them with the powerful GKP error-correction code. By entangling quantum vibrations inside a single atom, they achieved a milestone that could transform how quantum computers scale.
Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit interactions, this method uses magnetic interactions—common in many materials—to create robust topological excitations. Combined with a new computational tool for finding such materials, this breakthrough could pave the way for practical, disturbance-resistant quantum computers.
Researchers at Harvard have created a groundbreaking metasurface that can replace bulky and complex optical components used in quantum computing with a single, ultra-thin, nanostructured layer. This innovation could make quantum networks far more scalable, stable, and compact. By harnessing the power of graph theory, the team simplified the design of these quantum metasurfaces, enabling them to generate entangled photons and perform sophisticated quantum operations — all on a chip thinner than a human hair. It's a radical leap forward for room-temperature quantum technology and photonics.
AI-generated videos are becoming dangerously convincing and UC Riverside researchers have teamed up with Google to fight back. Their new system, UNITE, can detect deepfakes even when faces aren't visible, going beyond traditional methods by scanning backgrounds, motion, and subtle cues. As fake content becomes easier to generate and harder to detect, this universal tool might become essential for newsrooms and social media platforms trying to safeguard the truth.