Many products in the modern world are in some way fabricated using computer numerical control (CNC) machines, which use computers to automate machine operations in manufacturing. While simple in concept, the ways to instruct these machines is in reality often complex. A team of researchers has devised a system to demonstrate how to mitigate some of this complexity.
Humans are better than current AI models at interpreting social interactions and understanding social dynamics in moving scenes. Researchers believe this is because AI neural networks were inspired by the infrastructure of the part of the brain that processes static images, which is different from the area of the brain that processes dynamic social scenes.
Researchers have developed a new robotic framework powered by artificial intelligence -- called RHyME (Retrieval for Hybrid Imitation under Mismatched Execution) -- that allows robots to learn tasks by watching a single how-to video.
Researchers have developed a new artificial intelligence (AI) technique that brings machine vision closer to how the human brain processes images. Called Lp-Convolution, this method improves the accuracy and efficiency of image recognition systems while reducing the computational burden of existing AI models.
A powerful clinical artificial intelligence tool developed by biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step exams), according to a new article.
A team has developed an explainable AI model for automatic collision avoidance between ships.
A groundbreaking open-source computer program uses artificial intelligence to analyze videos of patients with Parkinson's disease and other movement disorders. The tool, called VisionMD, helps doctors more accurately monitor subtle motor changes, improving patient care and advancing clinical research.
FLUID, an open-source, 3D-printed robot, offers an affordable and customizable solution for automated material synthesis, making advanced research accessible to more scientists.
American Sign Language (ASL) recognition systems often struggle with accuracy due to similar gestures, poor image quality and inconsistent lighting. To address this, researchers developed a system that translates gestures into text with 98.2% accuracy, operating in real time under varying conditions. Using a standard webcam and advanced tracking, it offers a scalable solution for real-world use, with MediaPipe tracking 21 keypoints on each hand and YOLOv11 classifying ASL letters precisely.
A tiny, soft, flexible robot that can crawl through earthquake rubble to find trapped victims or travel inside the human body to deliver medicine may seem like science fiction, but an international team is pioneering such adaptable robots by integrating flexible electronics with magnetically controlled motion.
A new study shows that people in Japan treat robots and AI agents more respectfully than people in Western societies.
To get around the constraints of quantum physics, researchers have built a new acoustic system to study the way the minuscule atoms of condensed matter talk together. They hope to one day build an acoustic version of a quantum computer.
Researchers developed a hybrid AI approach that can generate realistic images with the same or better quality than state-of-the-art diffusion models, but that runs about nine times faster and uses fewer computational resources. The tool uses an autoregressive model to quickly capture the big picture and then a small diffusion model to refine the details of the image.
Virginia Tech researchers say a true revolution in wireless technologies is only possible through endowing the system with the next generation of artificial intelligence (AI) that can think, imagine, and plan akin to humans. Doing so will allow networks to break free from traditional enablers, deliver unprecedented quality, and usher in a new phase of the AI evolution.
Engineers developed a method to grow artificial muscle tissue that twitches and flexes in multiple, coordinated directions. These tissues could be useful for building 'biohybrid' robots powered by soft, artificially grown muscle fibers.