Findings describe a novel way to reduce the energy people spend to walk, as much as by half, which could have applications for therapy received by patients with impaired walking abilities.
To transform human mobility, exoskeletons need to interact seamlessly with their user, providing the right level of assistance at the right time to cooperate with our muscles as we move.
Raspberries are the ultimate summer fruit. Famous for their eye-catching scarlet color and distinctive structure, they consist of dozens of fleshy drupelets with a sweet yet slightly acidic pulp. But this delicate structure is also their primary weakness, as it leaves them vulnerable to even the slightest scratch or bruise. Farmers know all too well that raspberries are a difficult fruit to harvest—and that's reflected in their price tag. But what if robots, equipped with advanced actuators and sensors, could lend a helping hand? Engineers at EPFL's Computational Robot Design & Fabrication (CREATE) lab have set out to tackle this very challenge.
UCLA environmental law professor Sean Hecht was walking across the campus one recent night when he photographed a uniquely modern urban transport scene: a snarl of food delivery robots that couldn't figure out a way around a pile of discarded electric scooters.
In a low-light Culver City, California control room, Lily Shaw is getting her pilot mood on.
Over the last century, we have mined more and more raw materials, and manufactured products from those materials. Increased prices for mined raw materials and improved recycling technology have enabled some industries to rely more on recycled materials than ever before. A report by Bob Tita in the Wall Street Journal last week detailed this trend in the aluminum business. According to Tita:
Robotic wheelchairs may soon be able to move through crowds smoothly and safely. As part of CrowdBot, an EU-funded project, EPFL researchers are exploring the technical, ethical and safety issues related to this kind of technology. The aim of the project is to eventually help the disabled get around more easily.
Robots are featuring more and more in our daily lives. They can be incredibly useful (bionic limbs, robotic lawnmowers, or robots which deliver meals to people in quarantine), or merely entertaining (robotic dogs, dancing toys, and acrobatic drones). Imagination is perhaps the only limit to what robots will be able to do in the future.
Researchers from the RIKEN Guardian Robot Project and collaborators have used a combination of lightweight material engineering and artificial intelligence to create an exoskeleton robot that could help people with mobility impairments. An important element of the new device is technology that allows the skeleton to effectively guess the intentions of the user.
Robots have come a long way. For years, they have been supporting human activity—enabling exploration in dangerous and unreachable environments like out in space and deep in the oceans. A new generation of robots are being designed to stay closer to home—caring for aging adults and young children.
Engineers and scientists have developed proof of concept for a robot that can reach some of the smallest bronchial tubes in the lungs to take tissue samples or deliver cancer therapy.
Researchers at University of Washington have recently developed a new protocol to train robots and test their performance on tasks that involve object manipulation. This protocol, presented in a paper published in IEEE Robotics and Automation Letters, is based on the Rubik's Cube, the well-known 3D combination puzzle invented by the Hungarian sculpture and architect Ernő Rubik.
Researchers have developed a mind-reading system for decoding neural signals from the brain during arm movement. The method, described in the journal Applied Soft Computing, can be used by a person to control a robotic arm through a brain-machine interface (BMI).
It's been roughly 23 years since one of the first robotic animals trotted on the scene, defying classical notions of our cuddly four-legged friends. Since then, a barrage of the walking, dancing, and door-opening machines have commanded their presence, a sleek mixture of batteries, sensors, metal, and motors. Missing from the list of cardio activities was one both loved and loathed by humans (depending on whom you ask), and which proved slightly trickier for the bots: learning to run.
If a Tyrannosaurus Rex living 66 million years ago featured a similar leg structure as an ostrich running in the savanna today, then we can assume bird legs stood the test of time—a good example of evolutionary selection.