Baseball fans know the bitter heartbreak of calls that don't go their way—especially, a ball that should've been a strike. And, with advances in technology including computer vision, artificial intelligence, and the ubiquity of Wi-Fi, it would be easier than ever for baseball officials to replace humans with robotic umpires.
The number of collaborative mobile robots introduced in real-world settings is gradually increasing, with approximately 20,000 new installations per year. For their use to increase further, however, roboticists should ensure that these robots are both efficient and safe to use around humans.
Giving autonomous vehicles the 'green light' to break road rules is tackled in a new research in Ethics and Information Technology.
If you don't get seasick, an autonomous boat might be the right mode of transportation for you.
A research team from the Interactive and Robotic Systems Laboratory at the Universitat Jaume I in Castelló has developed software that allows underwater robots with manipulation capabilities to be controlled remotely in a more efficient way, as it offers a computer graphic interface and prior realistic simulation. The new technology amends, in the context of underwater scenarios, the lack of simulation systems and realistic 3D interfaces that enable remote control of tasks in autonomous and teleoperated mobile manipulator robots.
Can intelligence be taught to robots? Advances in physical reservoir computing, a technology that makes sense of brain signals, could contribute to creating artificial intelligence machines that think like us.
Commercial unmanned aerial vehicles (UAVs) have the potential to almost halve the carbon dioxide (CO2) emissions of urban freight transport compared to small light commercial vehicles (LCVs), providing an unprecedented opportunity for the logistics industry to reduce its environmental impact. This is just one of the breakthrough findings from a brand new report published today by Inmarsat, the world leader in global, mobile satellite communications, and Cranfield University, examining the wealth of new possibilities and applications unlocked by commercial UAVs.
Azobenzene-functionalized liquid crystalline materials can be operated by remote light-stimuli without complicated circuits or parts and thus are attracting great attention in fields such as human interfaces, haptic devices, and miniaturized soft robots.
As robots become increasingly sophisticated and advanced, they will typically require a growing amount of hardware components, including robotic limbs, motors, sensors and actuators. In addition, robots have integrated computers that process data collected by their sensors and plan their future actions accordingly.
A loping cheetah dashes across a rolling field, bounding over sudden gaps in the rugged terrain. The movement may look effortless, but getting a robot to move this way is an altogether different prospect.
The Raspberry Pi Foundation is announcing the release of Raspberry Pi Build HAT—an add-on device that allows users to use Raspberry Pi hardware to control LEGO Technic motors. On the Raspberry Pi News page, company rep Richard Hayler notes that the new device is the result of a collaborative effort between Raspberry Pi and LEGO Education and he describes the new device and the ways it may be used.
Last year, the Max Planck Institute for Intelligent Systems organized the Real Robot Challenge, a competition that challenged academic labs to come up with solutions to the problem of repositioning and reorienting a cube using a low-cost robotic hand. The teams participating in the challenge were asked to solve a series of object manipulation problems with varying difficulty levels.
Teams of robots could help users to complete numerous tasks more rapidly and efficiently, as well as keeping human agents out of harm's way during hazardous operations. In recent years, some studies have particularly explored the potential of robot swarms in assisting human agents during search-and-rescue missions; for instance, while seeking out survivors of natural disasters or delivering food and survival kits to them.
As a robotics engineer, Yasemin Ozkan-Aydin, assistant professor of electrical engineering at the University of Notre Dame, gets her inspiration from biological systems. The collective behaviors of ants, honeybees and birds to solve problems and overcome obstacles is something researchers have developed in aerial and underwater robotics. Developing small-scale swarm robots with the capability to traverse complex terrain, however, comes with a unique set of challenges.
Exoskeleton technology is becoming increasingly effective.