A group of researchers from Osaka University developed a quadruped robot platform that can reproduce the neuromuscular dynamics of animals (Figure 1), discovering that a steady gait and experimental behaviors of walking cats emerged from the reflex circuit in walking experiments on this robot. Their research results were published in Frontiers in Neurorobotics.
Researchers from AMOLF's Soft Robotic Matter group have shown that a group of small autonomous, self-learning robots can adapt easily to changing circumstances. They connected these simple robots in a line, after which each individual robot taught itself to move forward as quickly as possible. The results were published today in the scientific journal PNAS.
Computer scientists at the University of California San Diego have developed a more accurate navigation system that will allow robots to better negotiate busy clinical environments in general and emergency departments more specifically. The researchers have also developed a dataset of open source videos to help train robotic navigation systems in the future.
Robots and machines are getting smarter with the advancement of artificial intelligence, but they still lack the ability to touch and feel their subtle and complex surroundings like human beings. Now, researchers from the National University of Singapore (NUS) have invented a smart foam that can give machines more than a human touch.
A small study found that people who were touched by a humanoid robot while conversing with it subsequently reported a better emotional state and were more likely to comply with a request from the robot. Laura Hoffmann of Ruhr University Bochum, Germany, and Nicole C. Krämer of the University of Duisburg-Essen, Germany, present these findings in the open-access journal PLOS ONE on May 5, 2021.
Reflexes protect our bodies—for example when we pull our hand back from a hot stove. These protective mechanisms could also be useful for robots. In this interview, Prof. Sami Haddadin and Johannes Kühn of the Munich School of Robotics and Machine Intelligence (MSRM) of the Technical University of Munich (TUM) explain why giving test subjects a 'slap on the hand' could lay the foundations for the robots of the future.
With rapidly growing demands on health care systems, nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.
With rapidly growing demands on health care systems, nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.
When it comes to dancing, pulling a sled, climbing stairs or doing tricks, "Spot" is definitely a good dog. It can navigate the built environment and perform a range of tasks, clearly demonstrating its flexibility as a software and hardware platform for commercial use.
The disinfection robot BALTO—named after a sled dog who carried urgently needed vaccines to a highly inaccessible region of Alaska a hundred years ago—is capable of disinfecting door knobs and similar objects. It does this autonomously, reacting to human beings in the surrounding area at the same time. An interface with the Building Information Modeling (BIM) process makes this possible.
The field of soft robotics has exploded in the past decade, as ever more researchers seek to make real the potential of these pliant, flexible automata in a variety of realms, including search and rescue, exploration and medicine.
New York police will stop using a robotic dog similar to ones that inspired an episode of dystopian Netflix series "Black Mirror" after a backlash over its deployment, the force said Thursday.
A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) have developed a system with which they can fabricate miniature robots building block by building block, which function exactly as required.
In order to effectively navigate real-world environments, legged robots should be able to move swiftly and freely while maintaining their balance. This is particularly true for humanoid robots, robots with two legs and a human-like body structure.
University of Wollongong (UOW) researchers have mimicked the supercoiling properties of DNA to develop a new type of artificial muscle for use in miniature robot applications. Their research is published today in Science Robotics.