All posts by Robotics News - Robot News, Robotics, Robots, Robotics Sciences

Page 120 of 155
1 118 119 120 121 122 155

Robots can be more aware of human co-workers, with system that provides context

Working safely is not only about processes, but context—understanding the work environment and circumstances, and being able to predict what other people will do next. A new system empowers robots with this level of context awareness, so they can work side-by-side with humans on assembly lines more efficiently and without unnecessary interruptions.

Digital twin can protect physical systems and train new users

It is more complicated than copy and paste, but digital twins could be the way of future manufacturing according to researchers from the University of Kentucky. They developed a virtual environment based on human-robot interactions that can mirror the physical set up of a welder and their project. Called a digital twin, the prototype has implications for evolving manufacturing systems and training novice welders. They published their work in the IEEE/CAA Journal of Automatica Sinica.

A laser equipped robotic guide dog to lead people who are visually impaired

A small team of researchers at the University of California, Berkeley has developed a robot dog to help in ways similar to real guide dogs. They have written a paper describing their robot guide dog and have uploaded it to the arXiv preprint server. They have also posted two videos demonstrating the capabilities of their robot on YouTube.

Robot artist sells art for $688,888, now eyeing music career

Sophia is a robot of many talents—she speaks, jokes, sings and even makes art. In March, she caused a stir in the art world when a digital work she created as part of a collaboration was sold at an auction for $688,888 in the form of a non-fungible token (NFT).

‘Neutrobots’ smuggle drugs to the brain without alerting the immune system

A team of researchers from the Harbin Institute of Technology along with partners at the First Affiliated Hospital of Harbin Medical University, both in China, has developed a tiny robot that can ferry cancer drugs through the blood-brain barrier (BBB) without setting off an immune reaction. In their paper published in the journal Science Robotics, the group describes their robot and tests with mice. Junsun Hwang and Hongsoo Choi, with the Daegu Gyeongbuk Institute of Science and Technology in Korea, have published a Focus piece in the same journal issue on the work done by the team in China.

A robot that senses hidden objects

In recent years, robots have gained artificial vision, touch, and even smell. "Researchers have been giving robots human-like perception," says MIT Associate Professor Fadel Adib. In a new paper, Adib's team is pushing the technology a step further. "We're trying to give robots superhuman perception," he says.

ThermoBots: Microrobots on the water

This research project was originated from the collaboration between two institutions with their respective expertise: The TIPs laboratory of the ULB, in Belgium, which is a group dedicated to the study of transport phenomena and fluid interfaces, and the AS2M department of the FEMTO-ST institute, in France, specialized in microrobotics. And thus, ThermoBot was born, a new kind of manipulation platform working on the air-water interface. ThermoBot uses an original actuation mechanism, an infrared laser that locally heats the air-water interface, triggering so-called thermocapillary flows. Combining our specialties in interfacial phenomena and robotics, we were able to use this flow to displace floating components in a controlled manner.

Even without a brain, these metal-eating robots can search for food

When it comes to powering mobile robots, batteries present a problematic paradox: the more energy they contain, the more they weigh, and thus the more energy the robot needs to move. Energy harvesters, like solar panels, might work for some applications, but they don't deliver power quickly or consistently enough for sustained travel.

Scientists create the next generation of living robots

Last year, a team of biologists and computer scientists from Tufts University and the University of Vermont (UVM) created novel, tiny self-healing biological machines from frog cells called "Xenobots" that could move around, push a payload, and even exhibit collective behavior in the presence of a swarm of other Xenobots.

Ready for duty: Healthcare robots get good prognosis for next pandemic

Not long after the 1918 Spanish flu pandemic, Czech writer Karel Čapek first introduced the term "robot" to describe artificial people in his 1921 sci-fi play R.U.R. While we have not yet created the highly intelligent humanoid robots imagined by Čapek, the robots most commonly used today are complex systems that work alongside humans, assisting with an ever-expanding set of tasks.

How tiny machines become capable of learning

Living organisms, from bacteria to animals and humans, can perceive their environment and process, store and retrieve this information. They learn how to react to later situations using appropriate actions. A team of physicists at Leipzig University led by Professor Frank Cichos, in collaboration with colleagues at Charles University Prague, have developed a method for giving tiny artificial microswimmers a certain ability to learn using machine learning algorithms. They recently published a paper on this topic in the journal Science Robotics.

Electronics-free DraBot dragonfly signals environmental disruptions

Engineers at Duke University have developed an electronics-free, entirely soft robot shaped like a dragonfly that can skim across water and react to environmental conditions such as pH, temperature or the presence of oil. The proof-of-principle demonstration could be the precursor to more advanced, autonomous, long-range environmental sentinels for monitoring a wide range of potential telltale signs of problems.

Underwater swimming robot responds with feedback from soft ‘lateral line’

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Germany, from Seoul National University in Korea and from the Harvard University in the US, successfully developed a predictive model and closed-loop controller of a soft robotic fish, designed to actively adjust its undulation amplitude to changing flow conditions and other external disturbances. Their work "Modeling and Control of a Soft Robotic Fish with Integrated Soft Sensing" was published in Wiley's Advanced Intelligent Systems journal, in a special issue on "Energy Storage and Delivery in Robotic Systems."
Page 120 of 155
1 118 119 120 121 122 155