To successfully cooperate with humans on manual tasks, robots should be able to grasp and manipulate a variety of objects without dropping or damaging them. Recent research efforts in the field of robotics have thus focused on developing tactile sensors and controllers that could provide robots with the sense of touch and bring their object manipulation capabilities closer to those of humans.
Researchers at Carnegie Mellon University (CMU)'s Robomechanics Lab recently introduced two new approaches that could help to improve the ability of legged robots to move on rocky or extreme terrains. These two approaches, outlined in a paper pre-published on arXiv, are inspired by the innate proprioception abilities and tail mechanics of animals.
Commercial airplanes can be controlled by autopilot. But what happens if a wing gets damaged or an engine malfunctions? Is it possible to design a software system with a feedback loop—a system that quickly tests how controls operate on the damaged vessel and makes adjustments on the fly to give it the best chance of landing safely?
You may have already seen them in restaurants: waist-high machines that can greet guests, lead them to their tables, deliver food and drinks and ferry dirty dishes to the kitchen. Some have cat-like faces and even purr when you scratch their heads.
Walmart Inc. is betting on greater supply-chain automation and hinting that a recent investment binge might lift profit beyond the retailer's stated long-term goals.
Humans have a way of understandings others' goals, desires and beliefs, a crucial skill that allows us to anticipate people's actions. Taking bread out of the toaster? You'll need a plate. Sweeping up leaves? I'll grab the green trash can.
Artificial muscles and nerves made from the shape memory alloy nickel-titanium are making robot arms as supple and agile as their animal counterparts. But these artificial limbs also weigh less, will work tirelessly and can be precisely controlled. The bionic robot arms that are being developed by Professor Stefan Seelecke's research team at Saarland University in collaboration with the German automation specialist Festo consume very little electric power and can work safely with humans. The research team will be presenting the technology at this year's Hannover Messe from 17 to 21 April (Hall 002, Stand B34).
Roboticists have been using a technique similar to the ancient art of paper folding to develop autonomous machines out of thin, flexible sheets. These lightweight robots are simpler and cheaper to make and more compact for easier storage and transport.
Force-sensitive, dynamic, energy efficient and with a range of applications—these qualities are what distinguish the new robot gripper created by the Fraunhofer Institute for Mechatronic Systems Design IEM. It can transport fragile objects from one production step to the next without damaging them.
If you've ever played soccer with a robot, it's a familiar feeling. Sun glistens down on your face as the smell of grass permeates the air. You look around. A four-legged robot is hustling toward you, dribbling with determination.
Inspired by the human finger, MIT researchers have developed a robotic hand that uses high-resolution touch sensing to accurately identify an object after grasping it just one time.
Imagine a scenario. A young child asks a chatbot or a voice assistant if Santa Claus is real. How should the AI respond, given that some families would prefer a lie over the truth?
When multiple drones are working together in the same airspace, perhaps spraying pesticide over a field of corn, there's a risk they might crash into each other.
Honeybees are famously finicky when it comes to being studied. Research instruments and conditions and even unfamiliar smells can disrupt a colony's behavior. Now, a joint research team from the Mobile Robotic Systems Group in EPFL's School of Engineering and School of Computer and Communication Sciences and the Hiveopolis project at Austria's University of Graz have developed a robotic system that can be unobtrusively built into the frame of a standard honeybee hive.
Researchers at North Carolina State University have demonstrated a caterpillar-like soft robot that can move forward, backward and dip under narrow spaces. The caterpillar-bot's movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction.