When it comes to robots, bigger isn't always better. Someday, a swarm of insect-sized robots might pollinate a field of crops or search for survivors amid the rubble of a collapsed building.
Across a vast array of robotic hands and clamps, there is a common foe: The heirloom tomato. You may have seen a robotic gripper deftly pluck an egg or smoothly palm a basketball—but, unlike human hands, one gripper is unlikely to be able to do both and a key challenge remains hidden in the middle ground.
A team of researchers affiliated with multiple institutions in Korea has developed a robot hand that has abilities similar to human hands. In their paper published in the journal Nature Communications, the group describes how they achieved a high level of dexterity while keeping the hand's size and weight low enough to attach to a robot arm.
Researchers at Toyota Central R&D Labs have recently created an insect-scale aerial robot with flapping wings, powered using wireless radiofrequency technology. This robot, presented in a paper published in Nature Electronics, is based on a radiofrequency power receiver with a remarkable power-to-weight density of 4,900 W kg-1.
A novel wall climbing robot, built designed and created by Birmingham based HausBots with the help of WMG at the University of Warwick is on the market, and could reduce the number of workplace accidents.
Using autonomous vehicle guidelines, a team of UBC Okanagan researchers has developed a system to improve interactions between people and robots.
Researchers from North Carolina State University have come up with a new design for thermal actuators, which can be used to create rapid movement in soft robotic devices.
Psychologists use mazes to assess the learning capacity of mice or rats. But how about robots? Can they learn to navigate the twists and turns of a labyrinth? Now, researchers at the Eindhoven University of Technology (TU/e) in the Netherlands and the Max Planck Institute for Polymer Research in Mainz, Germany, have proven they can. Their robot bases its decisions on the very system humans use to think and act: the brain. The study, which was published in Science Advances, paves the way to exciting new applications of neuromorphic devices in health and beyond.
Engineers at Caltech, ETH Zurich, and Harvard are developing an artificial intelligence (AI) that will allow autonomous drones to use ocean currents to aid their navigation, rather than fighting their way through them.
When you think of a robot, images of R2-D2 or C-3PO might come to mind. But robots can serve up more than just entertainment on the big screen. In a lab, for example, robotic systems can improve safety and efficiency by performing repetitive tasks and handling harsh chemicals.
As robots become increasingly advanced, they are being trained to complete a wide variety of tasks. Some roboticists have been specifically exploring the potential of robotic systems that can assembly items without much human supervision, as this could significantly speed up industrial and production processes.
A team at Swiss-Mile, a spinoff of ETH Zurich has improved upon its ANYmal robot by giving it wheels—the result is known as the Swiss-Mile Robot. And by giving it wheels, the robot is now classified as a car, a quadruped and a humanoid robot, depending on its activity at any given time. Like the original ANYmal, the Swiss-Mile has a cartoonish look about it, as if it rolled out of one of the Pixar "Cars" movies.
Scientists from the Division of Mechanical Science and Engineering at Kanazawa University developed a prototype pipe maintenance robot that can unclog and repair pipes with a wide range of diameters. Using a cutting tool with multiple degrees of freedom, the machine is capable of manipulating and dissecting objects for removal. This work may be a significant step forward for the field of sewerage maintenance robots.
Let's say you wanted to build the world's best stair-climbing robot. You'd need to optimize for both the brain and the body, perhaps by giving the bot some high-tech legs and feet, coupled with a powerful algorithm to enable the climb.
Engineered Arts, a robot maker based in the U.K., is showing off its latest creation at this year's CES 2022. Called Ameca, the robot is able to display what appears to be the most human-like facial expressions by a robot to date. On its webpage, the company calls Ameca "The Future Face of Robotics."