Page 3 of 3
1 2 3

Does the next industrial revolution spell the end of manufacturing jobs?

By Jeff Morgan, Trinity College Dublin

Robots have been taking our jobs since the 1960s. So why are politicians and business leaders only now becoming so worried about robots causing mass unemployment?

It comes down to the question of what a robot really is. While science fiction has often portrayed robots as androids carrying out tasks in the much the same way as humans, the reality is that robots take much more specialised forms. Traditional 20th century robots were automated machines and robotic arms building cars in factories. Commercial 21st century robots are supermarket self-checkouts, automated guided warehouse vehicles, and even burger-flipping machines in fast-food restaurants.

Ultimately, humans haven’t become completely redundant because these robots may be very efficient but they’re also kind of dumb. They do not think, they just act, in very accurate but very limited ways. Humans are still needed to work around robots, doing the jobs the machines can’t and fixing them when they get stuck. But this is all set to change thanks to a new wave of smarter, better value machines that can adapt to multiple tasks. This change will be so significant that it will create a new industrial revolution.

The fourth industrial revolution.
Christoph Roser, CC BY-SA

Industry 4.0

This era of “Industry 4.0” is being driven by the same technological advances that enable the capabilities of the smartphones in our pockets. It is a mix of low-cost and high-power computers, high-speed communication and artificial intelligence. This will produce smarter robots with better sensing and communication abilities that can adapt to different tasks, and even coordinate their work to meet demand without the input of humans.

In the manufacturing industry, where robots have arguably made the most headway of any sector, this will mean a dramatic shift from centralised to decentralised collaborative production. Traditional robots focused on single, fixed, high-speed operations and required a highly skilled human workforce to operate and maintain them. Industry 4.0 machines are flexible, collaborative and can operate more independently, which ultimately removes the need for a highly skilled workforce.

 

For large-scale manufacturers, Industry 4.0 means their robots will be able to sense their environment and communicate in an industrial network that can be run and monitored remotely. Each machine will produce large amounts of data that can be collectively studied using what is known as “big data” analysis. This will help identify ways to improve operating performance and production quality across the whole plant, for example by better predicting when maintenance is needed and automatically scheduling it.

For small-to-medium manufacturing businesses, Industry 4.0 will make it cheaper and easier to use robots. It will create machines that can be reconfigured to perform multiple jobs and adjusted to work on a more diverse product range and different production volumes. This sector is already beginning to benefit from reconfigurable robots designed to collaborate with human workers and analyse their own work to look for improvements, such as BAXTER, SR-TEX and CareSelect.

Helping hands.
Rethink Robotics

While these machines are getting smarter, they are still not as smart as us. Today’s industrial artificial intelligence operates at a narrow level, which gives the appearance of human intelligence exhibited by machines, but designed by humans.

What’s coming next is known as “deep learning”. Similar to big data analysis, it involves processing large quantities of data in real time to make decisions about what is the best action to take. The difference is that the machine learns from the data so it can improve its decision making. A perfect example of deep learning was demonstrated by Google’s AlphaGo software, which taught itself to beat the world’s greatest Go players.

The turning point in applying artificial intelligence to manufacturing could come with the application of special microchips called graphical processing units (GPUs). These enable deep learning to be applied to extremely large data sets at extremely fast speeds. But there is still some way to go and big industrial companies are recruiting vast numbers of scientists to further develop the technology.

Impact on industry

As Industry 4.0 technology becomes smarter and more widely available, manufacturers of any size will be able to deploy cost-effective, multipurpose and collaborative machines as standard. This will lead to industrial growth and market competitiveness, with a greater understanding of production processes leading to new high-quality products and digital services.

Exactly what impact a smarter robotic workforce with the potential to operate on its own will have on the manufacturing industry, is still widely disputed. Artificial intelligence as we know it from science fiction is still in its infancy. It could well be the 22nd century before robots really have the potential to make human labour obsolete by developing not just deep learning but true artificial understanding that mimics human thinking.

Ideally, Industry 4.0 will enable human workers to achieve more in their jobs by removing repetitive tasks and giving them better robotic tools. In theory, this would allow us humans to focus more on business development, creativity and science, which it would be much harder for any robot to do. Technology that has made humans redundant in the past has forced us to adapt, generally with more education.

But because Industry 4.0 robots will be able to operate largely on their own, we might see much greater human redundancy from manufacturing jobs without other sectors being able to create enough new work. Then we might see more political moves to protect human labour, such as taxing robots.

The ConversationAgain, in an ideal scenario, humans may be able to focus on doing the things that make us human, perhaps fuelled by a basic income generated from robotic work. Ultimately, it will be up to us to define whether the robotic workforce will work for us, with us, or against us.

This article was originally published on The Conversation. Read the original article.

Asimov’s Laws won’t stop robots harming humans so we’ve developed a better solution

By Christoph Salge, Marie Curie Global Fellow, University of Hertfordshire

How do you stop a robot from hurting people? Many existing robots, such as those assembling cars in factories, shut down immediately when a human comes near. But this quick fix wouldn’t work for something like a self-driving car that might have to move to avoid a collision, or a care robot that might need to catch an old person if they fall. With robots set to become our servants, companions and co-workers, we need to deal with the increasingly complex situations this will create and the ethical and safety questions this will raise.

Science fiction already envisioned this problem and has suggested various potential solutions. The most famous was author Isaac Asimov’s Three Laws of Robotics, which are designed to prevent robots harming humans. But since 2005, my colleagues and I at the University of Hertfordshire, have been working on an idea that could be an alternative.

Instead of laws to restrict robot behaviour, we think robots should be empowered to maximise the possible ways they can act so they can pick the best solution for any given scenario. As we describe in a new paper in Frontiers, this principle could form the basis of a new set of universal guidelines for robots to keep humans as safe as possible.

The Three Laws

Asimov’s Three Laws are as follows:

  • A robot may not injure a human being or, through inaction, allow a human being to come to harm.
  • A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
  • A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

While these laws sound plausible, numerous arguments have demonstrated why they are inadequate. Asimov’s own stories are arguably a deconstruction of the laws, showing how they repeatedly fail in different situations. Most attempts to draft new guidelines follow a similar principle to create safe, compliant and robust robots.

One problem with any explicitly formulated robot guidelines is the need to translate them into a format that robots can work with. Understanding the full range of human language and the experience it represents is a very hard job for a robot. Broad behavioural goals, such as preventing harm to humans or protecting a robot’s existence, can mean different things in different contexts. Sticking to the rules might end up leaving a robot helpless to act as its creators might hope.

Our alternative concept, empowerment, stands for the opposite of helplessness. Being empowered means having the ability to affect a situation and being aware that you can. We have been developing ways to translate this social concept into a quantifiable and operational technical language. This would endow robots with the drive to keep their options open and act in a way that increases their influence on the world.

When we tried simulating how robots would use the empowerment principle in various scenarios, we found they would often act in surprisingly “natural” ways. It typically only requires them to model how the real world works but doesn’t need any specialised artificial intelligence programming designed to deal with the particular scenario.

But to keep people safe, the robots need to try to maintain or improve human empowerment as well as their own. This essentially means being protective and supportive. Opening a locked door for someone would increase their empowerment. Restraining them would result in a short-term loss of empowerment. And significantly hurting them could remove their empowerment altogether. At the same time, the robot has to try to maintain its own empowerment, for example by ensuring it has enough power to operate and it does not get stuck or damaged.

Robots could adapt to new situations

Using this general principle rather than predefined rules of behaviour would allow the robot to take account of the context and evaluate scenarios no one has previously envisaged. For example, instead of always following the rule “don’t push humans”, a robot would generally avoid pushing them but still be able to push them out of the way of a falling object. The human might still be harmed but less so than if the robot didn’t push them.

In the film I, Robot, based on several Asimov stories, robots create an oppressive state that is supposed to minimise the overall harm to humans by keeping them confined and “protected”. But our principle would avoid such a scenario because it would mean a loss of human empowerment.

The ConversationWhile empowerment provides a new way of thinking about safe robot behaviour, we still have much work to do on scaling up its efficiency so it can easily be deployed on any robot and translate to good and safe behaviour in all respects. This poses a very difficult challenge. But we firmly believe empowerment can lead us towards a practical solution to the ongoing and highly debated problem of how to rein in robots’ behaviour, and how to keep robots -– in the most naive sense -– “ethical”.

This article was originally published on The Conversation. Read the original article.

Helping or hacking? Engineers and ethicists must work together on brain-computer interface technology

File 20170609 4841 73vkw2
A subject plays a computer game as part of a neural security experiment at the University of Washington.
Patrick Bennett, CC BY-ND

By Eran Klein, University of Washington and Katherine Pratt, University of Washington

 

In the 1995 film “Batman Forever,” the Riddler used 3-D television to secretly access viewers’ most personal thoughts in his hunt for Batman’s true identity. By 2011, the metrics company Nielsen had acquired Neurofocus and had created a “consumer neuroscience” division that uses integrated conscious and unconscious data to track customer decision-making habits. What was once a nefarious scheme in a Hollywood blockbuster seems poised to become a reality.

Recent announcements by Elon Musk and Facebook about brain-computer interface (BCI) technology are just the latest headlines in an ongoing science-fiction-becomes-reality story.

BCIs use brain signals to control objects in the outside world. They’re a potentially world-changing innovation – imagine being paralyzed but able to “reach” for something with a prosthetic arm just by thinking about it. But the revolutionary technology also raises concerns. Here at the University of Washington’s Center for Sensorimotor Neural Engineering (CSNE) we and our colleagues are researching BCI technology – and a crucial part of that includes working on issues such as neuroethics and neural security. Ethicists and engineers are working together to understand and quantify risks and develop ways to protect the public now.

Picking up on P300 signals

All BCI technology relies on being able to collect information from a brain that a device can then use or act on in some way. There are numerous places from which signals can be recorded, as well as infinite ways the data can be analyzed, so there are many possibilities for how a BCI can be used.

Some BCI researchers zero in on one particular kind of regularly occurring brain signal that alerts us to important changes in our environment. Neuroscientists call these signals “event-related potentials.” In the lab, they help us identify a reaction to a stimulus.

Examples of event-related potentials (ERPs), electrical signals produced by the brain in response to a stimulus. Tamara Bonaci, CC BY-ND

In particular, we capitalize on one of these specific signals, called the P300. It’s a positive peak of electricity that occurs toward the back of the head about 300 milliseconds after the stimulus is shown. The P300 alerts the rest of your brain to an “oddball” that stands out from the rest of what’s around you.

For example, you don’t stop and stare at each person’s face when you’re searching for your friend at the park. Instead, if we were recording your brain signals as you scanned the crowd, there would be a detectable P300 response when you saw someone who could be your friend. The P300 carries an unconscious message alerting you to something important that deserves attention. These signals are part of a still unknown brain pathway that aids in detection and focusing attention.

Reading your mind using P300s

P300s reliably occur any time you notice something rare or disjointed, like when you find the shirt you were looking for in your closet or your car in a parking lot. Researchers can use the P300 in an experimental setting to determine what is important or relevant to you. That’s led to the creation of devices like spellers that allow paralyzed individuals to type using their thoughts, one character at a time.

It also can be used to determine what you know, in what’s called a “guilty knowledge test.” In the lab, subjects are asked to choose an item to “steal” or hide, and are then shown many images repeatedly of both unrelated and related items. For instance, subjects choose between a watch and a necklace, and are then shown typical items from a jewelry box; a P300 appears when the subject is presented with the image of the item he took.

Everyone’s P300 is unique. In order to know what they’re looking for, researchers need “training” data. These are previously obtained brain signal recordings that researchers are confident contain P300s; they’re then used to calibrate the system. Since the test measures an unconscious neural signal that you don’t even know you have, can you fool it? Maybe, if you know that you’re being probed and what the stimuli are.

Techniques like these are still considered unreliable and unproven, and thus U.S. courts have resisted admitting P300 data as evidence.

For now, most BCI technology relies on somewhat cumbersome EEG hardware that is definitely not stealth. Mark Stone, University of Washington, CC BY-ND

Imagine that instead of using a P300 signal to solve the mystery of a “stolen” item in the lab, someone used this technology to extract information about what month you were born or which bank you use – without your telling them. Our research group has collected data suggesting this is possible. Just using an individual’s brain activity – specifically, their P300 response – we could determine a subject’s preferences for things like favorite coffee brand or favorite sports.

But we could do it only when subject-specific training data were available. What if we could figure out someone’s preferences without previous knowledge of their brain signal patterns? Without the need for training, users could simply put on a device and go, skipping the step of loading a personal training profile or spending time in calibration. Research on trained and untrained devices is the subject of continuing experiments at the University of Washington and elsewhere.

It’s when the technology is able to “read” someone’s mind who isn’t actively cooperating that ethical issues become particularly pressing. After all, we willingly trade bits of our privacy all the time – when we open our mouths to have conversations or use GPS devices that allow companies to collect data about us. But in these cases we consent to sharing what’s in our minds. The difference with next-generation P300 technology under development is that the protection consent gives us may get bypassed altogether.

What if it’s possible to decode what you’re thinking or planning without you even knowing? Will you feel violated? Will you feel a loss of control? Privacy implications may be wide-ranging. Maybe advertisers could know your preferred brands and send you personalized ads – which may be convenient or creepy. Or maybe malicious entities could determine where you bank and your account’s PIN – which would be alarming.

With great power comes great responsibility

The potential ability to determine individuals’ preferences and personal information using their own brain signals has spawned a number of difficult but pressing questions: Should we be able to keep our neural signals private? That is, should neural security be a human right? How do we adequately protect and store all the neural data being recorded for research, and soon for leisure? How do consumers know if any protective or anonymization measures are being made with their neural data? As of now, neural data collected for commercial uses are not subject to the same legal protections covering biomedical research or health care. Should neural data be treated differently?

Neuroethicists from the UW Philosophy department discuss issues related to neural implants.
Mark Stone, University of Washington, CC BY-ND

These are the kinds of conundrums that are best addressed by neural engineers and ethicists working together. Putting ethicists in labs alongside engineers – as we have done at the CSNE – is one way to ensure that privacy and security risks of neurotechnology, as well as other ethically important issues, are an active part of the research process instead of an afterthought. For instance, Tim Brown, an ethicist at the CSNE, is “housed” within a neural engineering research lab, allowing him to have daily conversations with researchers about ethical concerns. He’s also easily able to interact with – and, in fact, interview – research subjects about their ethical concerns about brain research.

There are important ethical and legal lessons to be drawn about technology and privacy from other areas, such as genetics and neuromarketing. But there seems to be something important and different about reading neural data. They’re more intimately connected to the mind and who we take ourselves to be. As such, ethical issues raised by BCI demand special attention.

Working on ethics while tech’s in its infancy

As we wrestle with how to address these privacy and security issues, there are two features of current P300 technology that will buy us time.

First, most commercial devices available use dry electrodes, which rely solely on skin contact to conduct electrical signals. This technology is prone to a low signal-to-noise ratio, meaning that we can extract only relatively basic forms of information from users. The brain signals we record are known to be highly variable (even for the same person) due to things like electrode movement and the constantly changing nature of brain signals themselves. Second, electrodes are not always in ideal locations to record.

All together, this inherent lack of reliability means that BCI devices are not nearly as ubiquitous today as they may be in the future. As electrode hardware and signal processing continue to improve, it will be easier to continuously use devices like these, and make it easier to extract personal information from an unknowing individual as well. The safest advice would be to not use these devices at all.

The ConversationThe goal should be that the ethical standards and the technology will mature together to ensure future BCI users are confident their privacy is being protected as they use these kinds of devices. It’s a rare opportunity for scientists, engineers, ethicists and eventually regulators to work together to create even better products than were originally dreamed of in science fiction.

Page 3 of 3
1 2 3