Robots should be used to help, not harm. We prohibit weaponization, while supporting the safe, ethical, and effective use of robots in public safety.
Using a single machine controller with robot kinematic control built-in means you don’t need a separate controller for the robot or series of robots. This integration also puts robot and machine functions into just one development environment.
Under the Mobile Industrial Robot (MiR) name and led by Walter Vahey, the two Teradyne companies become a single supplier of autonomous mobile robots (AMRs), accelerating technology development and market leadership worldwide
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
Fifteen bachelor's and master's degree students from the Barcelona School of Industrial Engineering (ETSEIB) of the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) share the same dream: improving the quality of life of people with disabilities using assistive technologies. Specifically, the young biomedical engineering team Arm2u is developing a transradial prosthesis—which replaces an arm missing below the elbow—with myoelectric control (i.e., controlled by the natural electrical signals produced by muscle contraction).
A team led by the University of California San Diego has developed a new system of algorithms that enables four-legged robots to walk and run on challenging terrain while avoiding both static and moving obstacles.
Powered by AI, CMES Robotics enables 3D vision for factory robots. CMES AI vision software enables robots to recognize unstructured, flexible, or deformed objects, pick them up, and loading and unloading. CMES Vision software has been deployed worldwide for random palletization and depalletization along with void filling applications. CMES Robotics automates your warehouse, logistics, and supply chain. For more information, please visit: cmesrobotics.com or email info@cmesrobotics.com.
The palletizing magnet design recently modified by Goudsmit Magnetics consists of modules that vary in design. The low-maintenance magnet is suitable for palletizing and depalletizing cans, aerosols, canisters and glass jars with steel lids.