Category Robotics Classification

Page 101 of 537
1 99 100 101 102 103 537

AUAR Ships Robotic Micro-Factories to the US to Build Sustainable, Affordable Homes Across the Midwest

The robotic micro-factories developed by AUAR are a breakthrough technology for an industry struggling with a lack of skilled labour and low productivity; the two Micro-Factories shipped to the US can each produce up to 180 homes a year

Robot Talk Episode 91 – John Leonard

Claire chatted to John Leonard from Massachusetts Institute of Technology about autonomous navigation for underwater vehicles and self-driving cars.

John Leonard is a Professor of Mechanical and Ocean Engineering at Massachusetts Institute of Technology (MIT) and a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research addresses the problems of navigation and mapping for autonomous underwater vehicles, self-driving vehicles, and other types of mobile robots. He has a degree in Electrical Engineering and Science from the University of Pennsylvania and PhD in Engineering Science from the University of Oxford. He is a Technical Advisor at Toyota Research Institute.

LiDAR-based system allows unmanned aerial vehicle team to rapidly reconstruct environments

Unmanned aerial vehicles (UAVs), commonly known as drones, have proved to be highly effective systems for monitoring and exploring environments. These autonomous flying robots could also be used to create detailed maps and three-dimensional (3D) visualizations of real-world environments.

ROSE: A gentle and versatile robotic gripper for efficient crop harvesting

Robotic grippers have become essential across many industries, including manufacturing, packaging, and logistics, mainly for pick-and-place tasks. Recently, the demand for robotic grippers has also expanded into agriculture, where they are used for harvesting and packaging tasks.

A gentle and versatile robotic gripper for efficient crop harvesting

Conventional robotic grippers struggle to adapt to complex shapes and sizes, such as those found in crops. This has created a demand for more adaptable robotic grippers that can be utilized in agriculture. In a new study, researchers introduced an innovative soft robotic gripper named ROtation-based Squeezing grippEr (ROSE) and optimized its unique wrinkling-based grasping mechanism using simulations. ROSE's soft yet secure grasp can make it a vital tool for agriculture.
Page 101 of 537
1 99 100 101 102 103 537