Page 90 of 452
1 88 89 90 91 92 452

Octopus inspires new suction mechanism for robots

A new robotic suction cup that can grasp rough, curved and heavy stone, has been developed by scientists at the University of Bristol. The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock.

Using sim-to-real reinforcement learning to train robots to do simple tasks in broad environments

A team of roboticists at the University of California, Berkeley, reports that it is possible to train robots to do relatively simple tasks by using sim-to-real reinforcement learning to train them. In their study, published in the journal Science Robotics, the group trained a robot to walk in unfamiliar environments while it carried different loads, all without toppling over.

Engineers design spider-like robot that may be used to explore caves on Mars

A team of roboticists and mechanical and aeronautical engineers at Stanford University has developed a spider-like robot for possible use in exploring caves or lava tubes on Mars. In their paper published in the journal Science Robotics, the group describes their reasons for developing the new robot, their inspiration for the design, and how well it worked when tested in a real-world environment.

Octopus inspires new suction mechanism for robots

Suction cup grasping a stone – Image credit: Tianqi Yue

The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers,  which have superb adaptive suction abilities enabling them to anchor to rock.

In their findings, published in the journal PNAS today, the researchers show how they were able create a multi-layer soft structure and an artificial fluidic system to mimic the musculature and mucus structures of biological suckers.

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body’s mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity.

Lead author Tianqi Yue explained: “The most important development is that we successfully demonstrated the effectiveness of the combination of mechanical conformation – the use of soft materials to conform to surface shape, and liquid seal – the spread of water onto the contacting surface for improving the suction adaptability on complex surfaces. This may also be the secret behind biological organisms ability to achieve adaptive suction.”

Their multi-scale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multi-layer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to just micrometres. The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on diverse surfaces but with minimal overflow.

 

Tianqi added: “We believe the presented multi-scale adaptive suction mechanism is a powerful new adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.

”Current industrial solutions use always-on air pumps to actively generate the suction however, these are noisy and waste energy.

“With no need for a pump, it is well known that many natural organisms with suckers, including octopuses, some fishes such as suckerfish and remoras, leeches, gastropods and echinoderms, can maintain their superb adaptive suction on complex surfaces by exploiting their soft body structures.”

The findings have great potential for industrial applications, such as providing a next-generation robotic gripper for grasping a variety of irregular objects.

The team now plan to build a more intelligent suction cup, by embedding sensors into the suction cup to regulate suction cup’s behaviour.

Paper

Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion’ by Tianqi Yue, Weiyong Si, Alex Keller, Chenguang Yang, Hermes Bloomfield-Gadêlha and Jonathan Rossiter in PNAS.

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.

Research proposes virtual-dimension increase of EMG signals for prosthetic hands gesture recognition

The electromyographic (EMG) signal is the bioelectrical current generated during muscle contraction. It can be transmitted as an input signal to an intelligent bionic prosthetic hand to control hand movements. By increasing the number of signal acquisition channels, richer information about the intention of the action can be captured, thus improving the success rate of the recognition of the intention of the action. However, it is not better to have more acquisition channels.

A magneto-pneumatic hybrid-driven soft actuator with bidirectional torsion

The ability of the human wrist to rotate around the forearm axis in 2 directions is crucial for many daily activities. This rotation, limited to a range of approximately [-90°, 90°], restricts the wrist's capacity to execute complex operational tasks. For example, when we open or lock a door with a key, our wrist performs a large rotational movement. When we screw, the wrist needs to twist 180° several times.

Novel robotic training program reduces physician errors placing central lines

More than five million central lines are placed in patients who need prolonged drug delivery, such as those undergoing cancer treatments, in the United States every year, yet the common procedure can lead to a bevy of complications in almost a million of those cases. Researchers developed a robotic simulation training program to provide trainee physicians with more practice on the procedure. A year after deploying the program the team found that all complication types -- mechanical issues, infections and blood clots -- were significantly lower.

A rimless wheel robot that can reliably overcome steps

Robots with wheels could potentially navigate a variety of indoor and outdoor environments, traveling for longer distances and with fewer risks of losing balance. While some wheeled robots have achieved very promising results in recent years, most of them are unable to reliably overcome steps (i.e., surfaces that are raised above ground level).
Page 90 of 452
1 88 89 90 91 92 452