Talking Automate 2019 with LMI Technologies
Talking Automate 2019 with Zimmer Group
#283: Misty II: A Robotics Platform for Developers, with Ian Bernstein
In this episode, Audrow Nash speaks with Ian Bernstein, Founder and Head of Product at Misty Robotics, about a robotics platform designed for developers called Misty II. Bernstein discusses the motivation behind making a robotics platform for developers (relating it to personal computers), Misty II’s hardware extensibility and software “skills,” and the future direction of Misty Robotics.
A video introducing the Misty II platform:
Ian Bernstein
Ian Bernstein is Founder and Head of Product at Misty Robotics, a spin-off company from Sphero, Inc. focused on building personal robots for the home and office. In this role, Bernstein leads Misty Robotics’ product development and design. Prior to Misty Robotics, Bernstein served as Founder and Chief Technology Officer at Sphero, Inc. that has shipped more than 3 million robots to date. Bernstein joined TechStars in 2010 with Sphero co-founder Adam Wilson and created Sphero, the original app-enabled robotic ball. Bernstein has had a lifelong passion for robotics and creation and has been building robots since he was 12. Ian holds a BS in Electrical and Electronics Engineering from Colorado State University.
Links
- Download mp3 (13.8 MB)
- Misty Robotics’ homepage
- Subscribe to Robots using iTunes
- Subscribe to Robots using RSS
- Support us on Patreon
Boston Dynamics Handle Robot Reimagined for Logistics
Meet Marty, Your New Robotic Retail Worker
Talking ProMat 2019 with Schmalz
Talking Automate 2019 with Dorner Conveyors
Killer robots already exist, and they’ve been here a very long time
The social animals that are inspiring new behaviours for robot swarms
Robotic arms and temporary motorisation—the next generation of wheelchairs
PI USA – Why Use a Hexapod Robot?
PI USA – Problems Solved by Hexapod Robots
A rubber computer eliminates the last hard components from soft robots
By Caitlin McDermott-Murphy, Harvard University Department of Chemistry and Chemical Biology
A soft robot, attached to a balloon and submerged in a transparent column of water, dives and surfaces, then dives and surfaces again, like a fish chasing flies. Soft robots have performed this kind of trick before. But unlike most soft robots, this one is made and operated with no hard or electronic parts. Inside, a soft, rubber computer tells the balloon when to ascend or descend. For the first time, this robot relies exclusively on soft digital logic.
In the last decade, soft robots have surged into the metal-dominant world of robotics. Grippers made from rubbery silicone materials are already used in assembly lines: Cushioned claws handle delicate fruit and vegetables like tomatoes, celery, and sausage links or extract bottles and sweaters from crates. In laboratories, the grippers can pick up slippery fish, live mice, and even insects, eliminating the need for more human interaction.
Soft robots already require simpler control systems than their hard counterparts. The grippers are so compliant, they simply cannot exert enough pressure to damage an object and without the need to calibrate pressure, a simple on-off switch suffices. But until now, most soft robots still rely on some hardware: Metal valves open and close channels of air that operate the rubbery grippers and arms, and a computer tells those valves when to move.
Now, researchers have built a soft computer using just rubber and air. “We’re emulating the thought process of an electronic computer, using only soft materials and pneumatic signals, replacing electronics with pressurized air,” says Daniel J. Preston, first author on a paper published in PNAS and a postdoctoral researcher working with George Whitesides, a Founding Core Faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering, and the Woodford L. and Ann A. Flowers University Professor at Harvard University’s Department of Chemistry and Chemical Biology.
To make decisions, computers use digital logic gates, electronic circuits that receive messages (inputs) and determine reactions (outputs) based on their programming. Our circuitry isn’t so different: When a doctor strikes a tendon below our kneecap (input), the nervous system is programmed to jerk (output).
Preston’s soft computer mimics this system using silicone tubing and pressurized air. To achieve the minimum types of logic gates required for complex operations—in this case, NOT, AND, and OR—he programmed the soft valves to react to different air pressures. For the NOT logic gate, for example, if the input is high pressure, the output will be low pressure. With these three logic gates, Preston says, “you could replicate any behavior found on any electronic computer.”
The bobbing fish-like robot in the water tank, for example, uses an environmental pressure sensor (a modified NOT gate) to determine what action to take. The robot dives when the circuit senses low pressure at the top of the tank and surfaces when it senses high pressure at depth. The robot can also surface on command if someone pushes an external soft button.
Robots built with only soft parts have several benefits. In industrial settings, like automobile factories, massive metal machines operate with blind speed and power. If a human gets in the way, a hard robot could cause irreparable damage. But if a soft robot bumps into a human, Preston says, “you wouldn’t have to worry about injury or a catastrophic failure.” They can only exert so much force.
But soft robots are more than just safer: They are generally cheaper and simpler to make, light weight, resistant to damage and corrosive materials, and durable. Add intelligence and soft robots could be used for much more than just handling tomatoes. For example, a robot could sense a user’s temperature and deliver a soft squeeze to indicate a fever, alert a diver when the water pressure rises too high, or push through debris after a natural disaster to help find victims and offer aid.
Soft robots can also venture where electronics struggle: High radiative fields, like those produced after a nuclear malfunction or in outer-space, and inside Magnetic Resonance Imaging (MRI) machines. In the wake of a hurricane or flooding, a hardy soft robot could manage hazardous terrain and noxious air. “If it gets run over by a car, it just keeps going, which is something we don’t have with hard robots,” Preston says.
Preston and colleagues are not the first to control robots without electronics. Other research teams have designed microfluidic circuits, which can use liquid and air to create nonelectronic logic gates. One microfluidic oscillator helped a soft octopus-shaped robot flail all eight arms.
Yet, microfluidic logic circuits often rely on hard materials like glass or hard plastics, and they use such thin channels that only small amounts of air can move through at a time, slowing the robot’s motion. In comparison, Preston’s channels are larger—close to one millimeter in diameter—which enables much faster air flow rates. His air-based grippers can grasp an object in a matter of seconds.
Microfluidic circuits are also less energy efficient. Even at rest, the devices use a pneumatic resistor, which flows air from the atmosphere to either a vacuum or pressure source to maintain stasis. Preston’s circuits require no energy input when dormant. Such energy conservation could be crucial in emergency or disaster situations where the robots travel far from a reliable energy source.
The soft, pneumatic robots also offer an enticing possibility: Invisibility. Depending on which material Preston selects, he could design a robot that is index-matched to a specific substance. So, if he chooses a material that camouflages in water, the robot would appear transparent when submerged. In the future, he and his colleagues hope to create autonomous robots that are invisible to the naked eye or even sonar detection. “It’s just a matter of choosing the right materials,” he says.
For Preston, the right materials are elastomers or rubbers. While other fields chase higher power with machine learning and artificial intelligence, the Whitesides team turns away from the mounting complexity. “There’s a lot of capability there,” Preston says, “but it’s also good to take a step back and think about whether or not there’s a simpler way to do things that gives you the same result, especially if it’s not only simpler, it’s also cheaper.”
“Particle robot” works as a cluster of simple units
Taking a cue from biological cells, researchers from MIT, Columbia University, and elsewhere have developed computationally simple robots that connect in large groups to move around, transport objects, and complete other tasks.
This so-called “particle robotics” system — based on a project by MIT, Columbia Engineering, Cornell University, and Harvard University researchers — comprises many individual disc-shaped units, which the researchers call “particles.” The particles are loosely connected by magnets around their perimeters, and each unit can only do two things: expand and contract. (Each particle is about 6 inches in its contracted state and about 9 inches when expanded.) That motion, when carefully timed, allows the individual particles to push and pull one another in coordinated movement. On-board sensors enable the cluster to gravitate toward light sources.
In a Nature paper published today, the researchers demonstrate a cluster of two dozen real robotic particles and a virtual simulation of up to 100,000 particles moving through obstacles toward a light bulb. They also show that a particle robot can transport objects placed in its midst.
Particle robots can form into many configurations and fluidly navigate around obstacles and squeeze through tight gaps. Notably, none of the particles directly communicate with or rely on one another to function, so particles can be added or subtracted without any impact on the group. In their paper, the researchers show particle robotic systems can complete tasks even when many units malfunction.
The paper represents a new way to think about robots, which are traditionally designed for one purpose, comprise many complex parts, and stop working when any part malfunctions. Robots made up of these simplistic components, the researchers say, could enable more scalable, flexible, and robust systems.
“We have small robot cells that are not so capable as individuals but can accomplish a lot as a group,” says Daniela Rus, director of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science. “The robot by itself is static, but when it connects with other robot particles, all of a sudden the robot collective can explore the world and control more complex actions. With these ‘universal cells,’ the robot particles can achieve different shapes, global transformation, global motion, global behavior, and, as we have shown in our experiments, follow gradients of light. This is very powerful.”
Joining Rus on the paper are: first author Shuguang Li, a CSAIL postdoc; co-first author Richa Batra and corresponding author Hod Lipson, both of Columbia Engineering; David Brown, Hyun-Dong Chang, and Nikhil Ranganathan of Cornell; and Chuck Hoberman of Harvard.
At MIT, Rus has been working on modular, connected robots for nearly 20 years, including an expanding and contracting cube robot that could connect to others to move around. But the square shape limited the robots’ group movement and configurations.
In collaboration with Lipson’s lab, where Li was a graduate student until coming to MIT in 2014, the researchers went for disc-shaped mechanisms that can rotate around one another. They can also connect and disconnect from each other, and form into many configurations.
Each unit of a particle robot has a cylindrical base, which houses a battery, a small motor, sensors that detect light intensity, a microcontroller, and a communication component that sends out and receives signals. Mounted on top is a children’s toy called a Hoberman Flight Ring — its inventor is one of the paper’s co-authors — which consists of small panels connected in a circular formation that can be pulled to expand and pushed back to contract. Two small magnets are installed in each panel.
The trick was programming the robotic particles to expand and contract in an exact sequence to push and pull the whole group toward a destination light source. To do so, the researchers equipped each particle with an algorithm that analyzes broadcasted information about light intensity from every other particle, without the need for direct particle-to-particle communication.
The sensors of a particle detect the intensity of light from a light source; the closer the particle is to the light source, the greater the intensity. Each particle constantly broadcasts a signal that shares its perceived intensity level with all other particles. Say a particle robotic system measures light intensity on a scale of levels 1 to 10: Particles closest to the light register a level 10 and those furthest will register level 1. The intensity level, in turn, corresponds to a specific time that the particle must expand. Particles experiencing the highest intensity — level 10 — expand first. As those particles contract, the next particles in order, level 9, then expand. That timed expanding and contracting motion happens at each subsequent level.
“This creates a mechanical expansion-contraction wave, a coordinated pushing and dragging motion, that moves a big cluster toward or away from environmental stimuli,” Li says. The key component, Li adds, is the precise timing from a shared synchronized clock among the particles that enables movement as efficiently as possible: “If you mess up the synchronized clock, the system will work less efficiently.”
In videos, the researchers demonstrate a particle robotic system comprising real particles moving and changing directions toward different light bulbs as they’re flicked on, and working its way through a gap between obstacles. In their paper, the researchers also show that simulated clusters of up to 10,000 particles maintain locomotion, at half their speed, even with up to 20 percent of units failed.
“It’s a bit like the proverbial ‘gray goo,’” says Lipson, a professor of mechanical engineering at Columbia Engineering, referencing the science-fiction concept of a self-replicating robot that comprises billions of nanobots. “The key novelty here is that you have a new kind of robot that has no centralized control, no single point of failure, no fixed shape, and its components have no unique identity.”
The next step, Lipson adds, is miniaturizing the components to make a robot composed of millions of microscopic particles.