A motion control system is any system that entails the use of moving parts in a coordinated way. Most of the technology used in mechanical engineering is a result of the development and implementation of motion control systems.
Booth #S4314 - Introducing our AS40 conveyors with backlights. These backlights are specially designed to fit within the frame of our conveyors and, when coupled with a translucent belt, provide extra contrast for vision systems to aid in inspection applications
Brandon Alexander would like to introduce you to Angus, the farmer of the future. He's heavyset, weighing in at nearly 1,000 pounds, not to mention a bit slow. But he's strong enough to hoist 800-pound pallets of maturing vegetables and can move them from place to place on his own.
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a technology whereby two robots can work in unison to 3-D-print a concrete structure. This method of concurrent 3-D printing, known as swarm printing, paves the way for a team of mobile robots to print even bigger structures in the future. Developed by Assistant Professor Pham Quang Cuong and his team at NTU's Singapore Centre for 3-D Printing, this new multi-robot technology is reported in Automation in Construction. The NTU scientist was also behind the Ikea Bot project earlier this year, in which two robots assembled an Ikea chair in about nine minutes.
The human arm can perform a wide range of extremely delicate and coordinated movements, from turning a key in a lock to gently stroking a puppy's fur. The robotic "arms" on underwater research submarines, however, are hard, jerky, and lack the finesse to be able to reach and interact with creatures like jellyfish or octopuses without damaging them. Previously, the Wyss Institute for Biologically Inspired Engineering at Harvard University and collaborators developed a range of soft robotic grippers to more safely handle delicate sea life, but those gripping devices still relied on hard, robotic submarine arms that made it difficult to maneuver them into various positions in the water.
In this article, I discuss the primary reasons why autonomous vehicles are emerging, what factors go into developing self-driving cars, and how energy storage is a vital part of autonomous vehicle design.
Booth #N4740 - One exciting example of flexible and interactive technology will be the new collaborative robots. The new line, brought by Omron and Techman, is safer, simpler to program and easier to integrate with other equipment
In this episode, Audrow Nash interviews Robert Williamson, a Professor at the Australian National University, who speaks about a mathematical approach to ethics. This approach can get us started implementing robots that behave ethically. Williamson goes through his logical derivation of a mathematical formulation of ethics and then talks about the cost of fairness. In making his derivation, he relates bureaucracy to an algorithm. He wraps up by talking about how to work ethically.
Robert Williamson
Robert (Bob) Williamson is a professor in the research school of computer science at Australian National University. Until recently he was the chief scientist of DATA61, where he continues as a distinguished researcher. He served as scientific director and (briefly) CEO of NICTA, and lead its machine learning research group. His research is focussed on machine learning. He is the lead author of the ACOLA report Technology and Australia’s Future. He obtained his PhD in electrical engineering from the university of Queensland in 1990. He is a fellow of the Australian Academy of Science.
The 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (#IROS2018) will be held for the first time in Spain in the lively capital city of Madrid from 1 to 5 October. This year’s motto is “Towards a Robotic Society”.
Check here over the week for videos and tweets.
And if you have an article published at IROS that you would like share with the world, just send an image and a short summary (a couple paragraphs) to sabine.hauert@robohub.org Read More
Where am I? Like humans, robots also need to answer that question, while they tirelessly glue, weld or apply seals to workpieces. After all, the production of precision products depends on robot control systems knowing the location of the adhesive bonding head or welding head to the nearest millimeter at all times. This means the robot needs some sort of eye. In the automotive industry and many other sectors, specialized sensors perform this function, most of which operate on the principle of laser triangulation. A laser diode projects a line of red light onto the workpiece, from which the light is reflected at a specific angle before being detected by a camera. From the position of the light striking the camera chip, the position and distance of the sensor with respect to the workpiece within the coordinate system can be calculated.