Scientists at the University of Amsterdam discovered that our brains automatically understand how we can move through different environments—whether it's swimming in a lake or walking a path—without conscious thought. These "action possibilities," or affordances, light up specific brain regions independently of what’s visually present. In contrast, AI models like ChatGPT still struggle with these intuitive judgments, missing the physical context that humans naturally grasp.
AI is revolutionizing the job landscape, prompting nations worldwide to prepare their workforces for dramatic changes. A University of Georgia study evaluated 50 countries’ national AI strategies and found significant differences in how governments prioritize education and workforce training. While many jobs could disappear in the coming decades, new careers requiring advanced AI skills are emerging. Countries like Germany and Spain are leading with early education and cultural support for AI, but few emphasize developing essential human soft skills like creativity and communication—qualities AI can't replace.
Quantum computing just got a significant boost thanks to researchers at the University of Osaka, who developed a much more efficient way to create "magic states"—a key component for fault-tolerant quantum computers. By pioneering a low-level, or "level-zero," distillation method, they dramatically reduced the number of qubits and computational resources needed, overcoming one of the biggest obstacles: quantum noise. This innovation could accelerate the arrival of powerful quantum machines capable of revolutionizing industries from finance to biotech.
Imagine supercomputers that think with light instead of electricity. That s the breakthrough two European research teams have made, demonstrating how intense laser pulses through ultra-thin glass fibers can perform AI-like computations thousands of times faster than traditional electronics. Their system doesn t just break speed records it achieves near state-of-the-art results in tasks like image recognition, all in under a trillionth of a second.
AI researchers in Switzerland have found a way to dramatically cut cement s carbon footprint by redesigning its recipe. Their system simulates thousands of ingredient combinations, pinpointing those that keep cement strong while emitting far less CO2 all in seconds.
Researchers have created a revolutionary robotic skin that brings machines closer to human-like touch. Made from a flexible, low-cost gel material, this skin transforms the entire surface of a robotic hand into a sensitive, intelligent sensor. Unlike traditional robotic skins that rely on a patchwork of different sensors, this material can detect pressure, temperature, pain, and even distinguish multiple contact points all at once.
Unlike birds, which navigate unknown environments with remarkable speed and agility, drones typically rely on external guidance or pre-mapped routes. However, a groundbreaking development by Professor Fu Zhang and researchers from the Department of Mechanical Engineering of Faculty of Engineering at the University of Hong Kong (HKU), has enabled drones and micro air vehicles (MAVs) to emulate the flight capabilities of birds more closely than ever before.
Engineers have developed a real-life Transformer that has the 'brains' to morph in midair, allowing the drone-like robot to smoothly roll away and begin its ground operations without pause. The increased agility and robustness of such robots could be particularly useful for commercial delivery systems and robotic explorers.
Large language models (LLMs) -- the advanced AI behind tools like ChatGPT -- are increasingly integrated into daily life, assisting with tasks such as writing emails, answering questions, and even supporting healthcare decisions. But can these models collaborate with others in the same way humans do? Can they understand social situations, make compromises, or establish trust? A new study reveals that while today's AI is smart, it still has much to learn about social intelligence.
A new study in Nature describes both the mechanism and the material conditions necessary for superfluorescence at high temperature.
When it comes to public attitudes toward using self-driving cars, understanding how the vehicles work is important -- but so are less obvious characteristics like feelings of excitement or pleasure and a belief in technology's social benefits.
Is artificial intelligence (AI) capable of suggesting appropriate behavior in emotionally charged situations? A team put six generative AIs -- including ChatGPT -- to the test using emotional intelligence (EI) assessments typically designed for humans. The outcome: these AIs outperformed average human performance and were even able to generate new tests in record time. These findings open up new possibilities for AI in education, coaching, and conflict management.
Researchers have discovered a new class of materials -- called intercrystals -- with unique electronic properties that could power future technologies. Intercrystals exhibit newly discovered forms of electronic properties that could pave the way for advancements in more efficient electronic components, quantum computing and environmentally friendly materials, the scientists said.
In Project Chimera, a game lab combines a VR computer game with educational problems in order to convey scientific content in a motivating way.
The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of coupled cavity arrays.