Page 1 of 7
1 2 3 7

Researchers create the world’s smallest shooting video game using nanoscale technology

A research team demonstrated the 'world's smallest shooting game,' a unique nanoscale game inspired by classic arcade games. This achievement was made possible by real-time control of the force fields between nanoparticles using focused electron beams. This research has practical applications, as the manipulation of nanoscale objects could revolutionize biomedical engineering and nanotechnology.

AI generates playful, human-like games

A team of scientists has now created a computer model that can represent and generate human-like goals by learning from how people create games. The work could lead to AI systems that better understand human intentions and more faithfully model and align with our goals. It may also lead to AI systems that can help us design more human-like games.

AI unlocks the emotional language of animals

Groundbreaking study shows machine learning can decode emotions in seven ungulate species. A game-changer for animal welfare? Can artificial intelligence help us understand what animals feel? A pioneering study suggests the answer is yes. Researchers have successfully trained a machine-learning model to distinguish between positive and negative emotions in seven different ungulate species, including cows, pigs, and wild boars. By analyzing the acoustic patterns of their vocalizations, the model achieved an impressive accuracy of 89.49%, marking the first cross-species study to detect emotional valence using AI.

Like human brains, large language models reason about diverse data in a general way

Researchers find large language models process diverse types of data, like different languages, audio inputs, images, etc., similarly to how humans reason about complex problems. Like humans, LLMs integrate data inputs across modalities in a central hub that processes data in an input-type-agnostic fashion.

Groundbreaking study reveals how topology drives complexity in brain, climate, and AI

Researchers have unveiled a transformative framework for understanding complex systems. This pioneering study establishes the new field of higher-order topological dynamics, revealing how the hidden geometry of networks shapes everything from brain activity to the climate and artificial intelligence (AI).

Automatic speech recognition on par with humans in noisy conditions

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human performance. However, the systems need to be trained on an incredible amount of data, while humans acquire comparable skills in less time.

Brain-inspired nanotech points to a new era in electronics

Imagine a future where your phone, computer or even a tiny wearable device can think and learn like the human brain -- processing information faster, smarter and using less energy. A breakthrough approach brings this vision closer to reality by electrically 'twisting' a single nanoscale ferroelectric domain wall.
Page 1 of 7
1 2 3 7