All posts by Artificial Intelligence News -- ScienceDaily

Page 1 of 12
1 2 3 12

AI that talks to itself learns faster and smarter

AI may learn better when it’s allowed to talk to itself. Researchers showed that internal “mumbling,” combined with short-term memory, helps AI adapt to new tasks, switch goals, and handle complex challenges more easily. This approach boosts learning efficiency while using far less training data. It could pave the way for more flexible, human-like AI systems.

Researchers tested AI against 100,000 humans on creativity

A massive new study comparing more than 100,000 people with today’s most advanced AI systems delivers a surprising result: generative AI can now beat the average human on certain creativity tests. Models like GPT-4 showed strong performance on tasks designed to measure original thinking and idea generation, sometimes outperforming typical human responses. But there’s a clear ceiling. The most creative humans — especially the top 10% — still leave AI well behind, particularly on richer creative work like poetry and storytelling.

The human brain may work more like AI than anyone expected

Scientists have discovered that the human brain understands spoken language in a way that closely resembles how advanced AI language models work. By tracking brain activity as people listened to a long podcast, researchers found that meaning unfolds step by step—much like the layered processing inside systems such as GPT-style models.

Unbreakable? Researchers warn quantum computers have serious security flaws

Quantum computers could revolutionize everything from drug discovery to business analytics—but their incredible power also makes them surprisingly vulnerable. New research from Penn State warns that today’s quantum machines are not just futuristic tools, but potential gold mines for hackers. The study reveals that weaknesses can exist not only in software, but deep within the physical hardware itself, where valuable algorithms and sensitive data may be exposed.

Stanford’s AI spots hidden disease warnings that show up while you sleep

Stanford researchers have developed an AI that can predict future disease risk using data from just one night of sleep. The system analyzes detailed physiological signals, looking for hidden patterns across the brain, heart, and breathing. It successfully forecast risks for conditions like cancer, dementia, and heart disease. The results suggest sleep contains early health warnings doctors have largely overlooked.

Less than a trillionth of a second: Ultrafast UV light could transform communications and imaging

Researchers have built a new platform that produces ultrashort UV-C laser pulses and detects them at room temperature using atom-thin materials. The light flashes last just femtoseconds and can be used to send encoded messages through open space. The system relies on efficient laser generation and highly responsive sensors that scale well for manufacturing. Together, these advances could accelerate the development of next-generation photonic technologies.

Scientists create robots smaller than a grain of salt that can think

Researchers have created microscopic robots so small they’re barely visible, yet smart enough to sense, decide, and move completely on their own. Powered by light and equipped with tiny computers, the robots swim by manipulating electric fields rather than using moving parts. They can detect temperature changes, follow programmed paths, and even work together in groups. The breakthrough marks the first truly autonomous robots at this microscopic scale.

What if AI becomes conscious and we never know

A philosopher at the University of Cambridge says there’s no reliable way to know whether AI is conscious—and that may remain true for the foreseeable future. According to Dr. Tom McClelland, consciousness alone isn’t the ethical tipping point anyway; sentience, the capacity to feel good or bad, is what truly matters. He argues that claims of conscious AI are often more marketing than science, and that believing in machine minds too easily could cause real harm. The safest stance for now, he says, is honest uncertainty.

What if AI becomes conscious and we never know

A philosopher at the University of Cambridge says there’s no reliable way to know whether AI is conscious—and that may remain true for the foreseeable future. According to Dr. Tom McClelland, consciousness alone isn’t the ethical tipping point anyway; sentience, the capacity to feel good or bad, is what truly matters. He argues that claims of conscious AI are often more marketing than science, and that believing in machine minds too easily could cause real harm. The safest stance for now, he says, is honest uncertainty.

This tiny chip could change the future of quantum computing

A new microchip-sized device could dramatically accelerate the future of quantum computing. It controls laser frequencies with extreme precision while using far less power than today’s bulky systems. Crucially, it’s made with standard chip manufacturing, meaning it can be mass-produced instead of custom-built. This opens the door to quantum machines far larger and more powerful than anything possible today.

This AI finds simple rules where humans see only chaos

A new AI developed at Duke University can uncover simple, readable rules behind extremely complex systems. It studies how systems evolve over time and reduces thousands of variables into compact equations that still capture real behavior. The method works across physics, engineering, climate science, and biology. Researchers say it could help scientists understand systems where traditional equations are missing or too complicated to write down.

Scientists reveal a tiny brain chip that streams thoughts in real time

BISC is an ultra-thin neural implant that creates a high-bandwidth wireless link between the brain and computers. Its tiny single-chip design packs tens of thousands of electrodes and supports advanced AI models for decoding movement, perception, and intent. Initial clinical work shows it can be inserted through a small opening in the skull and remain stable while capturing detailed neural activity. The technology could reshape treatments for epilepsy, paralysis, and blindness.

Physicists reveal a new quantum state where electrons run wild

Electrons can freeze into strange geometric crystals and then melt back into liquid-like motion under the right quantum conditions. Researchers identified how to tune these transitions and even discovered a bizarre “pinball” state where some electrons stay locked in place while others dart around freely. Their simulations help explain how these phases form and how they might be harnessed for advanced quantum technologies.

New prediction breakthrough delivers results shockingly close to reality

Researchers have created a prediction method that comes startlingly close to real-world results. It works by aiming for strong alignment with actual values rather than simply reducing mistakes. Tests on medical and health data showed it often outperforms classic approaches. The discovery could reshape how scientists make reliable forecasts.

Artificial neurons that behave like real brain cells

USC researchers built artificial neurons that replicate real brain processes using ion-based diffusive memristors. These devices emulate how neurons use chemicals to transmit and process signals, offering massive energy and size advantages. The technology may enable brain-like, hardware-based learning systems. It could transform AI into something closer to natural intelligence.
Page 1 of 12
1 2 3 12