Category robots in business

Page 1 of 240
1 2 3 240

Mimicking the function of Ruffini receptors using a bio-inspired artificial skin

Mobile robots are now being introduced into a wide variety of real-world settings, including public spaces, home environments, health care facilities and offices. Many of these robots are specifically designed to interact and collaborate with humans, helping them to complete hands-on physical tasks.

The one-wheel Cubli

Researchers Matthias Hofer, Michael Muehlebach and Raffaello D’Andrea have developed the one-wheel Cubli, a three-dimensional pendulum system that can balance on its pivot using a single reaction wheel. How is it possible to stabilize the two tilt angles of the system with only a single reaction wheel?

The key is to design the system such that the inertia in one direction is higher than in the other direction by attaching two masses far away from the center. As a consequence, the system moves faster in the direction with the lower inertia and slower in the direction with the higher inertia. The controller can leverage this property and stabilize both directions simultaneously.

This work was carried out at the Institute for Dynamic Systems and Control, ETH Zurich, Switzerland.

Almost a decade has passed since the first Cubli

The Cubli robot started with a simple idea: Can we build a 15cm sided cube that can jump up, balance on its corner, and walk across our desk using off-the-shelf motors, batteries, and electronic components? The educational article Cubli – A cube that can jump up, balance, and walk across your desk shows all the design principles and prototypes that led to the development of the robot.

Cubli, from ETH Zurich.

Robot overcomes uncertainty to retrieve buried objects

For humans, finding a lost wallet buried under a pile of items is pretty straightforward—we simply remove things from the pile until we find the wallet. But for a robot, this task involves complex reasoning about the pile and objects in it, which presents a steep challenge.

A novel Kalman filter for target tracking in space

The space station is a bridgehead for human space exploration missions. During its construction, operation, and maintenance, there are a variety of tasks that need to be performed. However, the space environment has harsh conditions such as microgravity, high vacuum, strong radiation, and large temperature differences, which seriously threaten the health and life safety of astronauts.

Open-source and open hardware autonomous quadrotor flies fast and avoids obstacles

A team of researchers at the University of Zurich, has developed a highly agile quadrotor drone that is able to avoid obstacles and carry out trajectory tracking. In their paper published in the journal Science Robotics, the group describes how they designed their drone, what they put into it and how well it worked when tested.

At the forefront of building with biology

Ritu Raman, the d’Arbeloff Career Development Assistant Professor of Mechanical Engineering, focuses on building with biology, using living cells. Photo: David Sella

By Daniel de Wolff | MIT Industrial Liaison Program

It would seem that engineering is in Ritu Raman’s blood. Her mother is a chemical engineer, her father is a mechanical engineer, and her grandfather is a civil engineer. A common thread among her childhood experiences was witnessing firsthand the beneficial impact that engineering careers could have on communities. One of her earliest memories is watching her parents build communication towers to connect the rural villages of Kenya to the global infrastructure. She recalls the excitement she felt watching the emergence of a physical manifestation of innovation that would have a lasting positive impact on the community.  

Raman is, as she puts it, “a mechanical engineer through and through.” She earned her BS, MS, and PhD in mechanical engineering. Her postdoc at MIT was funded by a L’Oréal USA for Women in Science Fellowship and a Ford Foundation Fellowship from the National Academies of Sciences Engineering and Medicine.

Today, Ritu Raman leads the Raman Lab and is an assistant professor in the Department of Mechanical Engineering. But Raman is not tied to traditional notions of what mechanical engineers should be building or the materials typically associated with the field. “As a mechanical engineer, I’ve pushed back against the idea that people in my field only build cars and rockets from metals, polymers, and ceramics. I’m interested in building with biology, with living cells,” she says.

Our machines, from our phones to our cars, are designed with very specific purposes. And they aren’t cheap. But a dropped phone or a crashed car could mean the end of it, or at the very least an expensive repair bill. For the most part, that isn’t the case with our bodies. Biological materials have an unparalleled ability to sense, process, and respond to their environment in real-time. “As humans, if we cut our skin or if we fall, we’re able to heal,” says Raman. “So, I started wondering, ‘Why aren’t engineers building with the materials that have these dynamically responsive capabilities?’”

These days, Raman is focused on building actuators (devices that provide movement) powered by neurons and skeletal muscle that can teach us more about how we move and how we navigate the world. Specifically, she’s creating millimeter-scale models of skeletal muscle controlled by the motor neurons that help us plan and execute movement as well as the sensory neurons that tell us how to respond to dynamic changes in our environment.

Eventually, her actuators may guide the way to building better robots. Today, even our most advanced robots are a far cry from being able to reproduce human motion — our ability to run, leap, pivot on a dime, and change direction. But bioengineered muscle made in Raman’s lab has the potential to create robots that are more dynamically responsive to their environments.

Using a semi-autonomous robot to understand the psychological connections between machine and user

Humans have long been known to sympathize with the machines or computer representations they operate. Whether driving a car or directing a video game avatar, people are more likely to identify with something that they feel in control of. However, how the autonomous behavior of the robots affects their operators is not known. Now, researchers from Japan have found that when a person controls only a part of the body of a semi-autonomous robot, they are influenced by the robot's expressed "attitudes."

Supernumerary virtual robotic arms can feel like part of the body

Research teams at the University of Tokyo, Keio University and Toyohashi University of Technology in Japan have developed a virtual robotic limb system which can be operated by users' feet in a virtual environment as extra, or supernumerary, limbs. After training, users reported feeling like the virtual robotic arms had become part of their own body. Published in Scientific Reports, this study focused on the perceptual changes of the participants, understanding of which can contribute to designing real physical robotic supernumerary limb systems that people can use naturally and freely just like our own bodies.
Page 1 of 240
1 2 3 240