Meet Sylvia Christie, our education partnerships manager who’s played a leading role in expanding our scholarship programme, which is marking its five-year anniversary.
Meet Sylvia Christie, our education partnerships manager who’s played a leading role in expanding our scholarship programme, which is marking its five-year anniversary.
Developing a vaccine that could save hundreds of thousands of lives
Developing a vaccine that could save hundreds of thousands of lives
Perception – the process of experiencing the world through senses – is a significant part of intelligence. And building agents with human-level perceptual understanding of the world is a central but challenging task, which is becoming increasingly important in robotics, self-driving cars, personal assistants, medical imaging, and more. So today, we’re introducing the Perception Test, a multimodal benchmark using real-world videos to help evaluate the perception capabilities of a model.
Perception – the process of experiencing the world through senses – is a significant part of intelligence. And building agents with human-level perceptual understanding of the world is a central but challenging task, which is becoming increasingly important in robotics, self-driving cars, personal assistants, medical imaging, and more. So today, we’re introducing the Perception Test, a multimodal benchmark using real-world videos to help evaluate the perception capabilities of a model.
As we build increasingly advanced artificial intelligence (AI) systems, we want to make sure they don’t pursue undesired goals. Such behaviour in an AI agent is often the result of specification gaming – exploiting a poor choice of what they are rewarded for. In our latest paper, we explore a more subtle mechanism by which AI systems may unintentionally learn to pursue undesired goals: goal misgeneralisation (GMG). GMG occurs when a system's capabilities generalise successfully but its goal does not generalise as desired, so the system competently pursues the wrong goal. Crucially, in contrast to specification gaming, GMG can occur even when the AI system is trained with a correct specification.
As we build increasingly advanced artificial intelligence (AI) systems, we want to make sure they don’t pursue undesired goals. Such behaviour in an AI agent is often the result of specification gaming – exploiting a poor choice of what they are rewarded for. In our latest paper, we explore a more subtle mechanism by which AI systems may unintentionally learn to pursue undesired goals: goal misgeneralisation (GMG). GMG occurs when a system's capabilities generalise successfully but its goal does not generalise as desired, so the system competently pursues the wrong goal. Crucially, in contrast to specification gaming, GMG can occur even when the AI system is trained with a correct specification.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
In our paper, published today in Nature, we introduce AlphaTensor, the first artificial intelligence (AI) system for discovering novel, efficient, and provably correct algorithms for fundamental tasks such as matrix multiplication. This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices. This paper is a stepping stone in DeepMind’s mission to advance science and unlock the most fundamental problems using AI. Our system, AlphaTensor, builds upon AlphaZero, an agent that has shown superhuman performance on board games, like chess, Go and shogi, and this work shows the journey of AlphaZero from playing games to tackling unsolved mathematical problems for the first time.
Detecting signs of disease before bones start to break
Detecting signs of disease before bones start to break
Helping uncover how protein mutations cause diseases and disorders
Helping uncover how protein mutations cause diseases and disorders
We’re partnering with six education charities and social enterprises in the United Kingdom (UK) to co-create a bespoke education programme to help tackle the gaps in STEM education and boost existing programmes.