We develop Perceiver AR, an autoregressive, modality-agnostic architecture which uses cross-attention to map long-range inputs to a small number of latents while also maintaining end-to-end causal masking. Perceiver AR can directly attend to over a hundred thousand tokens, enabling practical long-context density estimation without the need for hand-crafted sparsity patterns or memory mechanisms.
We develop Perceiver AR, an autoregressive, modality-agnostic architecture which uses cross-attention to map long-range inputs to a small number of latents while also maintaining end-to-end causal masking. Perceiver AR can directly attend to over a hundred thousand tokens, enabling practical long-context density estimation without the need for hand-crafted sparsity patterns or memory mechanisms.
Starting this weekend, the thirty-ninth International Conference on Machine Learning (ICML 2022) is meeting from 17-23 July, 2022 at the Baltimore Convention Center in Maryland, USA, and will be running as a hybrid event. Researchers working across artificial intelligence, data science, machine vision, computational biology, speech recognition, and more are presenting and publishing their cutting-edge work in machine learning.
Starting this weekend, the thirty-ninth International Conference on Machine Learning (ICML 2022) is meeting from 17-23 July, 2022 at the Baltimore Convention Center in Maryland, USA, and will be running as a hybrid event. Researchers working across artificial intelligence, data science, machine vision, computational biology, speech recognition, and more are presenting and publishing their cutting-edge work in machine learning.
Despite significant effort, current AI systems pale in their understanding of intuitive physics, in comparison to even very young children. In the present work, we address this AI problem, specifically by drawing on the field of developmental psychology.
Despite significant effort, current AI systems pale in their understanding of intuitive physics, in comparison to even very young children. In the present work, we address this AI problem, specifically by drawing on the field of developmental psychology.
In our recent paper, published in Nature Human Behaviour, we provide a proof-of-concept demonstration that deep reinforcement learning (RL) can be used to find economic policies that people will vote for by majority in a simple game. The paper thus addresses a key challenge in AI research - how to train AI systems that align with human values.
In our recent paper, published in Nature Human Behaviour, we provide a proof-of-concept demonstration that deep reinforcement learning (RL) can be used to find economic policies that people will vote for by majority in a simple game. The paper thus addresses a key challenge in AI research - how to train AI systems that align with human values.
Avishkar Bhoopchand, a research engineer on the Game Theory and Multi-agent team, shares his journey to DeepMind and how he’s working to raise the profile of deep learning across Africa.
Avishkar Bhoopchand, a research engineer on the Game Theory and Multi-agent team, shares his journey to DeepMind and how he’s working to raise the profile of deep learning across Africa.
We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments.
According to empirical evidence from prior works, utility degradation in DP-SGD becomes more severe on larger neural network models – including the ones regularly used to achieve the best performance on challenging image classification benchmarks. Our work investigates this phenomenon and proposes a series of simple modifications to both the training procedure and model architecture, yielding a significant improvement on the accuracy of DP training on standard image classification benchmarks.
Today we caught up with Gemma Jennings, a product manager on the Applied team, who led a session on vision language models at the AI Summit, one of the world’s largest AI events for business.
Research scientist, Kevin McKee, tells how his early love of science fiction and social psychology inspired his career, and how he’s helping advance research in ‘queer fairness’, support human-AI collaboration, and study the effects of AI on the LGBTQ+ community.
In this paper, we assess the merits of these existing evaluation metrics and present a novel approach to evaluation called the Standardised Test Suite (STS). The STS uses behavioural scenarios mined from real human interaction data.