Page 15 of 16
1 13 14 15 16

Perceiver AR: general-purpose, long-context autoregressive generation

We develop Perceiver AR, an autoregressive, modality-agnostic architecture which uses cross-attention to map long-range inputs to a small number of latents while also maintaining end-to-end causal masking. Perceiver AR can directly attend to over a hundred thousand tokens, enabling practical long-context density estimation without the need for hand-crafted sparsity patterns or memory mechanisms.

Perceiver AR: general-purpose, long-context autoregressive generation

We develop Perceiver AR, an autoregressive, modality-agnostic architecture which uses cross-attention to map long-range inputs to a small number of latents while also maintaining end-to-end causal masking. Perceiver AR can directly attend to over a hundred thousand tokens, enabling practical long-context density estimation without the need for hand-crafted sparsity patterns or memory mechanisms.

DeepMind’s latest research at ICML 2022

Starting this weekend, the thirty-ninth International Conference on Machine Learning (ICML 2022) is meeting from 17-23 July, 2022 at the Baltimore Convention Center in Maryland, USA, and will be running as a hybrid event. Researchers working across artificial intelligence, data science, machine vision, computational biology, speech recognition, and more are presenting and publishing their cutting-edge work in machine learning.

DeepMind’s latest research at ICML 2022

Starting this weekend, the thirty-ninth International Conference on Machine Learning (ICML 2022) is meeting from 17-23 July, 2022 at the Baltimore Convention Center in Maryland, USA, and will be running as a hybrid event. Researchers working across artificial intelligence, data science, machine vision, computational biology, speech recognition, and more are presenting and publishing their cutting-edge work in machine learning.

Human-centred mechanism design with Democratic AI

In our recent paper, published in Nature Human Behaviour, we provide a proof-of-concept demonstration that deep reinforcement learning (RL) can be used to find economic policies that people will vote for by majority in a simple game. The paper thus addresses a key challenge in AI research - how to train AI systems that align with human values.

Human-centred mechanism design with Democratic AI

In our recent paper, published in Nature Human Behaviour, we provide a proof-of-concept demonstration that deep reinforcement learning (RL) can be used to find economic policies that people will vote for by majority in a simple game. The paper thus addresses a key challenge in AI research - how to train AI systems that align with human values.

BYOL-Explore: Exploration with Bootstrapped Prediction

We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments.

Unlocking High-Accuracy Differentially Private Image Classification through Scale

According to empirical evidence from prior works, utility degradation in DP-SGD becomes more severe on larger neural network models – including the ones regularly used to achieve the best performance on challenging image classification benchmarks. Our work investigates this phenomenon and proposes a series of simple modifications to both the training procedure and model architecture, yielding a significant improvement on the accuracy of DP training on standard image classification benchmarks.
Page 15 of 16
1 13 14 15 16