All posts by Robotics Research News -- ScienceDaily

Page 1 of 15
1 2 3 15

A springtail-like jumping robot

Springtails, small bugs often found crawling through leaf litter and garden soil, are expert jumpers. Inspired by these hopping hexapods, roboticists have made a walking, jumping robot that pushes the boundaries of what small robots can do. The research glimpses a future where nimble microrobots can crawl through tiny spaces, skitter across dangerous ground, and sense their environments without human intervention.

A new model accurately predicts the movement of elite athletes to catch the ball in parabolic flight

How does a tennis player like Carlos Alcaraz decide where to run to return Novak Djokovic's ball by just looking at the ball's initial position? These behaviours, so common in elite athletes, are difficult to explain with current computational models, which assume that the players must continuously follow the ball with their eyes. Now, researchers have developed a model that, by combining optical variables with environmental factors such as gravity, accurately predicts how a person will move to catch a moving object just from an initial glance. These results could have potential applications in fields such as robotics, sports training or even space exploration.

A robust and adaptive controller for ballbots

Ballbots are versatile robotic systems with the ability to move around in all directions. This makes it tricky to control their movement. In a recent study, a team has proposed a novel proportional integral derivative controller that, in combination with radial basis function neural network, robustly controls ballbot motion. This technology is expected to find applications in service robots, assistive robots, and delivery robots.

Scientists optimize biohybrid ray development with machine learning

The Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and NTT Research, Inc., a division of NTT, announced the publication of research showing an application of machine-learning directed optimization (ML-DO) that efficiently searches for high-performance design configurations in the context of biohybrid robots. Applying a machine learning approach, the researchers created mini biohybrid rays made of cardiomyocytes (heart muscle cells) and rubber with a wingspan of about 10 mm that are approximately two times more efficient at swimming than those recently developed under a conventional biomimetic approach.

Combining millions of years of evolution with tech wizardry: The cyborg cockroach

A research team has developed two new autonomous navigation systems for cyborg insects to better navigate unknown, complex environments. The algorithms utilized only simple circuits that leveraged natural insect behaviors, like wall-following and climbing, to navigate challenging terrain, such as sandy, rock-strewn surfaces. For all difficulties of terrain tested, the cyborg insects were able to reach their target destination, demonstrating the potential of cyborg insects for surveillance, disaster-site exploration, and more.

Biohybrid hand gestures with human muscles

A biohybrid hand which can move objects and do a scissor gesture has been created. The researchers used thin strings of lab-grown muscle tissue bundled into sushilike rolls to give the fingers enough strength to contract. These multiple muscle tissue actuators (MuMuTAs), created by the researchers, are a major development towards building larger biohybrid limbs. While currently limited to the lab environment, MuMuTAs have the potential to advance future biohybrid prosthetics, aid drug testing on muscle tissue and broaden the potential of biohybrid robotics to mimic real-life forms.
Page 1 of 15
1 2 3 15