All posts by Robotics Research News -- ScienceDaily

Page 1 of 24
1 2 3 24

AI maps the hidden forces shaping cancer survival worldwide

Researchers have turned artificial intelligence into a powerful new lens for understanding why cancer survival rates differ so dramatically around the world. By analyzing cancer data and health system information from 185 countries, the AI model highlights which factors, such as access to radiotherapy, universal health coverage, and economic strength, are most closely linked to better survival in each nation.

The breakthrough that makes robot faces feel less creepy

Humans pay enormous attention to lips during conversation, and robots have struggled badly to keep up. A new robot developed at Columbia Engineering learned realistic lip movements by watching its own reflection and studying human videos online. This allowed it to speak and sing with synchronized facial motion, without being explicitly programmed. Researchers believe this breakthrough could help robots finally cross the uncanny valley.

How everyday foam reveals the secret logic of artificial intelligence

Foams were once thought to behave like glass, with bubbles frozen in place at the microscopic level. But new simulations reveal that foam bubbles are always shifting, even while the foam keeps its overall shape. Remarkably, this restless motion follows the same math used to train artificial intelligence. The finding hints that learning-like behavior may be a fundamental principle shared by materials, machines, and living cells.

AI may not need massive training data after all

New research shows that AI doesn’t need endless training data to start acting more like a human brain. When researchers redesigned AI systems to better resemble biological brains, some models produced brain-like activity without any training at all. This challenges today’s data-hungry approach to AI development. The work suggests smarter design could dramatically speed up learning while slashing costs and energy use.

A new tool is revealing the invisible networks inside cancer

Spanish researchers have created a powerful new open-source tool that helps uncover the hidden genetic networks driving cancer. Called RNACOREX, the software can analyze thousands of molecular interactions at once, revealing how genes communicate inside tumors and how those signals relate to patient survival. Tested across 13 different cancer types using international data, the tool matches the predictive power of advanced AI systems—while offering something rare in modern analytics: clear, interpretable explanations that help scientists understand why tumors behave the way they do.

AI detects cancer but it’s also reading who you are

AI tools designed to diagnose cancer from tissue samples are quietly learning more than just disease patterns. New research shows these systems can infer patient demographics from pathology slides, leading to biased results for certain groups. The bias stems from how the models are trained and the data they see, not just from missing samples. Researchers also demonstrated a way to significantly reduce these disparities.

AI finds a hidden stress signal inside routine CT scans

Researchers used a deep learning AI model to uncover the first imaging-based biomarker of chronic stress by measuring adrenal gland volume on routine CT scans. This new metric, the Adrenal Volume Index, correlates strongly with cortisol levels, allostatic load, perceived stress, and even long-term cardiovascular outcomes, including heart failure risk.

This tiny implant sends secret messages to the brain

Researchers have built a fully implantable device that sends light-based messages directly to the brain. Mice learned to interpret these artificial patterns as meaningful signals, even without touch, sight, or sound. The system uses up to 64 micro-LEDs to create complex neural patterns that resemble natural sensory activity. It could pave the way for next-generation prosthetics and new therapies.

AI’s climate impact is much smaller than many feared

New findings challenge the widespread belief that AI is an environmental villain. By analyzing U.S. economic data and AI usage across industries, researchers discovered that AI’s energy consumption—while significant locally—barely registers at national or global scales. Even more surprising, AI could help accelerate green technologies rather than hinder them.

Scientists uncover the brain’s hidden learning blocks

Princeton researchers found that the brain excels at learning because it reuses modular “cognitive blocks” across many tasks. Monkeys switching between visual categorization challenges revealed that the prefrontal cortex assembles these blocks like Legos to create new behaviors. This flexibility explains why humans learn quickly while AI models often forget old skills. The insights may help build better AI and new clinical treatments for impaired cognitive adaptability.

AI creates the first 100-billion-star Milky Way simulation

Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational bottlenecks in galactic modeling. The result is a simulation hundreds of times faster than current methods.

Chimps shock scientists by changing their minds with new evidence

Chimps may revise their beliefs in surprisingly human-like ways. Experiments showed they switched choices when presented with stronger clues, demonstrating flexible reasoning. Computational modeling confirmed these decisions weren’t just instinct. The findings could influence how we think about learning in both children and AI.

A single beam of light runs AI with supercomputer power

Aalto University researchers have developed a method to execute AI tensor operations using just one pass of light. By encoding data directly into light waves, they enable calculations to occur naturally and simultaneously. The approach works passively, without electronics, and could soon be integrated into photonic chips. If adopted, it promises dramatically faster and more energy-efficient AI systems.
Page 1 of 24
1 2 3 24