All posts by Shaunak Kapur

Robo-Insight #6

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the 6th edition of Robo-Insight, a robotics news update! In this post, we are excited to share a range of new advancements in the field and highlight robots’ progress in areas like medical assistance, prosthetics, robot flexibility, joint movement, work performance, AI design, and household cleanliness.

Robots that can aid nurses

In the medical world, researchers from Germany have developed a robotic system designed to help nurses relieve the physical strain associated with patient care. Nurses often face high physical demands when attending to bedridden patients, especially during tasks like repositioning them. Their work explores how robotic technology can assist in such tasks by remotely anchoring patients in a lateral position. The results indicate that the system improved the working posture of nurses by an average of 11.93% and was rated as user-friendly. The research highlights the potential for robotics to support caregivers in healthcare settings, improving both nurse working conditions and patient care.

Arrangement of patient room used in the study. Source.

Robots enhancing bionic hand control

Keeping our focus healthcare-related, recently researchers from numerous European institutions have achieved a significant breakthrough in robot prosthetic technology, as they successfully implanted a neuromusculoskeletal prosthesis, a bionic hand connected directly to the user’s nervous and skeletal systems, in a person with a below-elbow amputation. This achievement involved surgical procedures to place titanium implants in the radius and ulna bones and transfer severed nerves to free muscle grafts. These neural interfaces provided a direct connection between the prosthesis and the user’s body, allowing for improved prosthetic function and increased quality of life. Their work demonstrates the potential for highly integrated prosthetic devices to enhance the lives of amputees through reliable neural control and comfortable, everyday use.

Schematic and X-ray of a fully integrated human-machine interface in a patient. Source.

Reinforcement learning in soft robotics

Turning our focus to soft robotics, researchers from the Center for Research and Advanced Studies of the National Polytechnic Institut of Mexico and the Universidad Autónoma de Coahuila have proposed an approach to use reinforcement learning (RL) for motor control of a pneumatic-driven soft robot modeled after continuum media with varying density. This method involves a continuous-time Actor-Critic scheme designed for tracking tasks in a 3D soft robot subject to Lipschitz disturbances. Their study introduces a reward-based temporal difference mechanism and a discontinuous adaptive approach for neural weights in the Critic component of the system. The overall aim is to enable RL to control the complex, uncertain, and deformable nature of soft robots while ensuring stability in real-time control, a crucial requirement for physical systems. This research focuses on the application of RL in managing the unique challenges posed by soft robots.

Distinct distortions of a cylindrical-shaped flexible robot. Source.

A teen-sized humanoid robot

Moving onto human-robot interactions, researchers from the University of Texas at Austin’s Human-Centered Robotics Laboratory have introduced a teen-sized humanoid robot named DRACO 3, designed in collaboration with Apptronik. This robot, tailored for practical use in human environments, features proximal actuation and employs rolling contact mechanisms on its lower body, allowing for extensive vertical poses. A whole-body controller (WBC) has been developed to manage DRACO 3’s complex transmissions. This research offers insights into the development and control of humanoids with rolling contact joints, focusing on practicality and performance.

Diagram illustrating the rolling contact joint at the knee. Initial configuration (left) and post-angular displacement (right). Source.

Robots’ impacts on performance

Shifting our focus to psychology, recently researchers from Technische Universität Berlin have investigated the phenomenon of social loafing in human-robot teams. Social loafing refers to reduced individual effort in a team setting compared to working alone. The study involved participants inspecting circuit boards for defects, with one group working alone and the other with a robot partner. Despite a reliable robot that marked defects on boards, participants working with the robot identified fewer defects compared to those working alone, suggesting a potential occurrence of social loafing in human-robot teams. This research sheds light on the challenges associated with human-robot collaboration and its impact on individual effort and performance.

Results of solo work vs. robot work. Source.

A robot designed by AI

Changing our focus to robot design, researchers from Northwestern University have developed an AI system that designs robots from scratch, enabling it to create a walking robot in seconds, a task that took nature billions of years to evolve. This AI system runs on a lightweight personal computer, without relying on energy-hungry supercomputers or large datasets, offering the potential to design robots with unique forms rapidly. The system works by iterating on a design, assessing its flaws, and refining the structure in a matter of seconds. It paves the way for a new era of AI-designed tools capable of acting directly on the world for various applications.

3D printer designing robot. Source.

A customizable robot for household organization

Finally, in the field of home robotics, researchers from Stanford, Princeton, Columbia University, and Google, have developed TidyBot, a one-armed robot designed to clean spaces according to personal preferences. TidyBot uses a large language model trained on internet data to identify various objects and understand where to put them, making it highly customizable to different preferences. In real-world tests, the robot can correctly put away approximately 85% of objects, significantly improving household organization. While TidyBot still has room for improvement, researchers believe it holds great promise for making robots more versatile and useful in homes and other environments.

Tidybot in training. Source.

The ongoing development in a multitude of sectors highlights the flexibility and steadily advancing character of robotics technology, uncovering fresh possibilities for its incorporation into a wide range of industries. The progressive expansion in the realm of robotics mirrors unwavering commitment and offers a glimpse into the potential consequences of these advancements for the times ahead.

Sources:

  1. Hinrichs, P., Seibert, K., Arizpe Gómez, P., Pfingsthorn, M., & Hein, A. (2023). A Robotic System to Anchor a Patient in a Lateral Position and Reduce Nurses’ Physical Strain. Robotics12(5)
  2. Ortiz-Catalán, M., Zbinden, J., Millenaar, J., D’Accolti, D., Controzzi, M., Clemente, F., Cappello, L., Earley, E. J., Enzo Mastinu, Justyna Kolankowska, Munoz-Novoa, M., Stewe Jönsson, Njel, C., Paolo Sassu, & Rickard Brånemark. (2023). A highly integrated bionic hand with neural control and feedback for use in daily life. Science Robotics
  3. Pantoja-Garcia, L., Parra-Vega, V., Garcia-Rodriguez, R., & Vázquez-García, C. E. (2023). A Novel Actor—Critic Motor Reinforcement Learning for Continuum Soft Robots. Robotics12(5)
  4. Bang, S. H., Gonzalez, C., Ahn, J., Paine, N., & Sentis, L. (2023, September 26). Control and evaluation of a humanoid robot with rolling contact joints on its lower body. Frontiers.
  5. Cymek, D. H., Truckenbrodt, A., & Onnasch, L. (2023, August 31). Lean back or lean in? exploring social loafing in human–robot teams. Frontiers. 
  6. Instant evolution: AI designs new robot from scratch in seconds. (n.d.). News.northwestern.edu.
  7. University, S. (2023, October 3). Robot provides personalized room cleanup. Stanford News.

Robo-Insight #5

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the 5th edition of Robo-Insight, a robotics news update! In this post, we are excited to share a range of new advancements in the field and highlight robots’ progress in areas like human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research.

New tools for human-robot interaction

In the realm of human-robot interactions, researchers from around Europe have developed a new tool called HEUROBOX to assess interactions. HEUROBOX offers 84 basic and 228 advanced heuristics for evaluating various aspects of human-robot interaction, such as safety, ergonomics, functionality, and interfaces. It places a strong emphasis on human-centered design, addressing the vital connection between technology and human factors. This tool aims to facilitate seamless collaboration between humans and robots in industrial settings by ensuring robots align with human capabilities and needs, emphasizing productivity and well-being.


Approach for creating a novel method to assess Human-Robot Interaction (HRI) heuristics. Source.

Innovations for enhanced control in agile robotics

Shifting our focus to agile robots, researchers from Zhejiang University have designed a cable-driven snake-like robot for efficient motion in confined spaces. This robot utilizes force transducers and angle sensors to achieve precise dual-loop control. By combining pose feedback from angle sensors and force feedback from transducers, this control strategy enhances the robot’s accuracy and ensures cable force and stiffness, guaranteeing stability and reliability during motion. This innovation has significant potential for various applications, including minimally invasive surgery, nuclear waste handling, in-space inspections, and search and rescue operations in complex environments. The robot’s design and control strategy promises advancements in high-precision robotic systems for engineering applications.

CSR Overview. Source.

Better training methods in agile robotics

Keeping within the field of agile robotics, researchers from the University of Zurich have recently pushed the boundaries of this type of robots, focusing on the pivotal role of control systems within them. Their investigation pitted two key methodologies against each other: model-based optimal control (OC) and reinforcement learning (RL). Surprisingly, RL, which enables robots to learn through trial and error, triumphed in a demanding real-world test: autonomous drone racing. Not only did RL outperform but surpassed human capabilities, with the agile drone achieving an astonishing peak acceleration, exceeding 12 times gravitational acceleration, and a remarkable top speed of 108 kilometers per hour. These results illuminate the promising future of agile robotics, where learning-centric approaches like RL pave the way for more efficient control and performance in diverse applications.

The visual progression shows a fast-racing drone being controlled by the RL strategy over time. Source.

New strong and stiff soft robots

Changing our focus to the world of soft robotics, recently researchers from Kangwon National University have presented a soft gripper robot with the ability to vary its stiffness, addressing a major challenge in the field of soft robotics. Unlike complex designs, this gripper achieves stiffness variation through a straightforward mechanism involving pneumatic control and tendons actuated by stepper motors. This innovation allows the gripper to adapt to objects of various shapes, sizes, and weights, expanding its potential applications. The study demonstrates that this gripper can increase its stiffness by up to 145% and handle weights of up to 2.075 kg. Soft robotics, inspired by natural organisms, holds promise in healthcare, manufacturing, exploration, and other fields, and this research contributes to its advancement.

CAD design of gripper mechanism. Source.

Enhanced brain surgery robots

Turning our focus to the medical robotics world, researchers from Harvard Medical School have developed a robotic device poised to enhance neurosurgery by making it less invasive. The team introduced a novel two-armed joystick-controlled endoscopic robot designed to mimic the dexterity of open surgery but with smaller incisions. This innovation was put to the test in the context of brain tumor resection, a typically invasive procedure. Compared to conventional manual endoscopic tools, the robot offered greater access to the surgical site, enabling bimanual tasks without brain tissue compression, and often completing tasks more swiftly. These findings open the door to the potential transformation of traditionally open brain surgeries into less invasive endoscopic procedures.

Robotic tube arms with varying degrees of stiffness. Source.

An advanced robotics needle

Along the same lines as medical robotics advancements, a team of researchers led by Professor Ron Alterovitz at the University of North Carolina at Chapel Hill has developed an autonomous robotic needle designed to navigate through intricate lung tissue while avoiding obstacles and important lung structures. The needle uses AI and computer vision to autonomously travel through living tissue, making it a potentially valuable tool for precise medical procedures like biopsies and targeted drug delivery. This development represents a significant step in the field of medical robotics, offering improved accuracy and safety in minimally invasive procedures. The researchers plan to further refine the technology and explore additional medical applications.

The robotic needle emerging from a bronchoscope. Source.

Robots could bee the key to ecological research

Finally, in the ecological field, robotics researchers from Durham University are teaming up with experts from various disciplines to investigate how animals are adapting to ecological challenges, with the aim of mitigating global biodiversity loss. Leading the RoboRoyale project, Dr. Farshad Arvin combines miniature robotics, artificial intelligence, and machine learning to develop robotic bees. These robotic bees are designed to interact with honeybee queens, enhancing their egg-laying and pheromone production, which influences hive behavior. This unique project focuses exclusively on queen bees, using a multi-robot system that learns over time how to optimize their well-being. Simultaneously, the MammalWeb project collects camera trap images to monitor the habits and behaviors of UK mammals, addressing the impact of climate change and human activities on biodiversity. These initiatives represent groundbreaking contributions from the robotics community to ecological research.

A robotic development device. Source.

The continuous evolution across various sectors underscores the adaptable and consistently progressing nature of robotics technology, revealing new opportunities for its integration into diverse industries. The gradual growth in the field of robotics reflects sustained dedication and provides insight into the potential implications of these developments for the future.

Sources:

  1. Apraiz, A., Mulet Alberola, J. A., Lasa, G., Mazmela, M., & Nguyen, H. N. (2023, August 16). Development of a new set of heuristics for the evaluation of human-robot interaction in industrial settings: Heuristics Robots experience (HEUROBOX). Frontiers.
  2. Xu, X., Wang, C., Xie, H., Wang, C., & Yang, H. (2023, September 4). Dual-loop control of cable-driven snake-like robots. MDPI.
  3. Song, Y., Romero, A., Matthias Müller, Koltun, V., & Davide Scaramuzza. (2023). Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics8(82).
  4. Mawah, S. C., & Park, Y.-J. (2023, September 11). Tendon-driven variable-stiffness pneumatic soft gripper robot. MDPI.
  5. Price, K., Peine, J., Mencattelli, M., Yash Chitalia, Pu, D., Looi, T., Stone, S., Drake, J. M., & Dupont, P. E. (2023). Using robotics to move a neurosurgeon’s hands to the tip of their endoscope. Science Robotics8(82).
  6. Autonomous Medical Robot Successfully Steers Needles Through Living Tissue. (n.d.). Computer Science. Retrieved September 23, 2023
  7. University, D. (n.d.). Computer Science research to build robotic bees and monitor mammals – Durham University. Www.durham.ac.uk. Retrieved September 23, 2023‌

Robo-Insight #4

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the 4th edition of Robo-Insight, a biweekly robotics news update! In this post, we are excited to share a range of new advancements in the field and highlight robots’ progress in areas like mobile applications, cleaning, underwater mining, flexibility, human well-being, depression treatments, and human interactions.

Simplified mobile robot behavior adaptations

In the world of system adaptions, researchers from Eindhoven University of Technology have introduced a methodology that bridges the gap between application developers and control engineers in the context of mobile robots’ behavior adaptation. This approach leverages symbolic descriptions of robots’ behavior, known as “behavior semantics,” and translates them into control actions through a “semantic map.” This innovation aims to simplify motion control programming for autonomous mobile robot applications and facilitate integration across various vendors’ control software. By establishing a structured interaction layer between application, interaction, and control layers, this methodology could streamline the complexity of mobile robot applications, potentially leading to more efficient underground exploration and navigation systems.

The frontal perspective of the mobile platform (showcases hardware components with blue arrows). Source.

New robot for household clean-ups

Speaking of helpful robots, Princeton University has created a robot named TidyBot to address the challenge of household tidying. Unlike simple tasks such as moving objects, real-world cleanup requires a robot to differentiate between objects, place them correctly, and avoid damaging them. TidyBot accomplishes this through a combination of physical dexterity, visual recognition, and language understanding. Equipped with a mobile robotic arm, a vision model, and a language model, TidyBot can identify objects, place them in designated locations, and even infer proper actions with an 85% accuracy rate. The success of TidyBot demonstrates its potential to handle complex household tasks.

TidyBot in work. Source.

Deep sea mining robots

Shifting our focus to underwater environments, researchers are addressing the efficiency hurdles faced in deep-sea mining through innovative path planning for autonomous robotic mining vehicles. With deep-sea manganese nodules holding significant potential, these robotic vehicles are essential for their collection. By refining path planning methods, the researchers aim to improve the efficiency of these vehicles in traversing challenging underwater terrains while avoiding obstacles. This development could lead to more effective and responsible resource extraction from the ocean floor, contributing to the sustainable utilization of valuable mineral resources.

Diagram depicting the operational framework of the deep-sea mining system. Source.

Advanced soft robots with dexterity and flexibility

In regards to the field of robotic motion, recently researchers from Shanghai Jiao Tong University have developed small-scale soft robots with remarkable dexterity, enabling immediate and reversible changes in motion direction and shape reconfiguration. These robots, powered by an active dielectric elastomer artificial muscle and a unique chiral-lattice foot design, can change direction during fast movement with a single voltage input. The chiral-lattice foot generates various locomotion behaviors, including forward, backward, and circular motion, by adjusting voltage frequencies. Additionally, combining this structural design with shape memory materials allows the robots to perform complex tasks like navigating narrow tunnels or forming specific trajectories. This innovation opens the door to next-generation autonomous soft robots capable of versatile locomotion.

The soft robot achieves circular motion in either right or left directions by positioning the lattice foot towards the respective sides. Source.

Robotic dogs utilized to comfort patients

Turning our focus to robot use in the healthcare field, Stanford students, along with researchers and doctors, have partnered with AI and robotics industry leaders to showcase new robotic dogs designed to interact with pediatric patients at Lucile Packard Children’s Hospital. Patients at the hospital had the opportunity to engage with the playful robots, demonstrating the potential benefits of these mechanical pets for children’s well-being during their hospital stays. The robots, called Pupper, were developed by undergraduate engineering students and operated using handheld controllers. The goal of the demonstration was to study the interaction between the robots and pediatric patients, exploring ways to enhance the clinical experience and reduce anxiety.

A patient playing with the robotic dog. Source.

Robotic innovations could help with depression

Along the same lines as improving well-being, a recent pilot study has explored the potential benefits of using robotics in transcranial magnetic stimulation (TMS) for treating depression. Researchers led by Hyunsoo Shin developed a custom TMS robot designed to improve the accuracy of TMS coil placement on the brain, a critical aspect of effective treatment. By employing the robotic system, they reduced preparation time by 53% and significantly minimized errors in coil positioning. The study found comparable therapeutic effects on depression severity and regional cerebral blood flow (rCBF) between the robotic and manual TMS methods, shedding light on the potential of robotic assistance in enhancing the precision and efficiency of TMS treatments.

Configuration of the robotic repetitive transcranial magnetic stimulation (rTMS) within the treatment facility, and robotic positioning device for automated coil placement. Source.

Advanced robotic eye research

Finally, in the world of human-robot enhancement, a study conducted by researchers from various institutions has explored the potential of using robot eyes as predictive cues in human-robot interaction (HRI). The study aimed to understand whether and how the design of predictive robot eyes could enhance interactions between humans and robots. Four different types of eye designs were tested, including arrows, human eyes, and two anthropomorphic robot eye designs. The results indicated that abstract anthropomorphic robot eyes, which mimic certain aspects of human-like attention, were most effective at directing participants’ attention and triggering reflexive shifts. These findings suggest that incorporating abstract anthropomorphic eyes into robot design could improve the predictability of robot movements and enhance HRI.

The four types of stimuli. The first row showcases the human (left) and arrow (right) stimuli. The second row displays the abstract anthropomorphic robot eyes. Photograph of the questionnaire’s subject, the cooperative robot Sawyer. Source.

The continuous stream of progress seen across diverse domains underscores the adaptable and constantly progressing nature of robotics technology, revealing novel pathways for its incorporation across a spectrum of industries. The gradual advancement in the realm of robotics reflects persistent efforts and hints at the potential implications these strides might hold for the future.

Sources:

  1. Chen, H. L., Hendrikx, B., Torta, E., Bruyninckx, H., & van de Molengraft, R. (2023, July 10). Behavior adaptation for mobile robots via semantic map compositions of constraint-based controllers. Frontiers.
  2. Princeton Engineering – Engineers clean up with TidyBot. (n.d.). Princeton Engineering. Retrieved August 30, 2023,
  3. Xie, Y., Liu, C., Chen, X., Liu, G., Leng, D., Pan, W., & Shao, S. (2023, July 12). Research on path planning of autonomous manganese nodule mining vehicle based on lifting mining system. Frontiers.
  4. Wang, D., Zhao, B., Li, X., Dong, L., Zhang, M., Zou, J., & Gu, G. (2023). Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nature Communications14(1), 5067.
  5. University, S. (2023, August 1). Robo-dogs unleash joy at Stanford hospital. Stanford Report.
  6. Shin, H., Jeong, H., Ryu, W., Lee, G., Lee, J., Kim, D., Song, I.-U., Chung, Y.-A., & Lee, S. (2023). Robotic transcranial magnetic stimulation in the treatment of depression: a pilot study. Scientific Reports13(1), 14074.
  7. Onnasch, L., Schweidler, P., & Schmidt, H. (2023, July 3). The potential of robot eyes as predictive cues in HRI-an eye-tracking study. Frontiers.

Robo-Insight #3

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the third edition of Robo-Insight, a biweekly robotics news update! In this post, we are excited to share a range of new advancements in the field and highlight progress in areas like motion, unfamiliar navigation, dynamic control, digging, agriculture, surgery, and food sorting.

A bioinspired robot masters 8 modes of motion for adaptive maneuvering

In a world of constant motion, a newly developed robot named M4 (Multi-Modal Mobility Morphobot) has demonstrated the ability to switch between eight different modes of motion, including rolling, flying, and walking. Designed by researchers from Caltech’s Center for Autonomous Systems and Technologies (CAST) and Northeastern University, the robot can autonomously adapt its movement strategy based on its environment. Created by engineers Mory Gharib and Alireza Ramezani, the M4 project aims to enhance robot locomotion by utilizing a combination of adaptable components and artificial intelligence. The potential applications of this innovation range from medical transport to planetary exploration.

The robot switches from its driving to its walking state. Source.

New navigation approach for robots aiding visually impaired individuals

Speaking of movement, researchers from the Hamburg University of Applied Sciences have presented an innovative navigation algorithm for a mobile robot assistance system based on OpenStreetMap data. The algorithm addresses the challenges faced by visually impaired individuals in navigating unfamiliar routes. By employing a three-stage process involving map verification, augmentation, and generation of a navigable graph, the algorithm optimizes navigation for this user group. The study highlights the potential of OpenStreetMap data to enhance navigation applications for visually impaired individuals, carrying implications for the advancement of robotics solutions that can cater to specific user requirements through data verification and augmentation.

This autonomous vehicle aims to guide visually impaired individuals. Source.

A unique technique enhances robot control in dynamic environments

Along the same lines as new environments, researchers from MIT and Stanford University have developed a novel machine-learning technique that enhances the control of robots, such as drones and autonomous vehicles, in rapidly changing environments. The approach leverages insights from control theory to create effective control strategies for complex dynamics, like wind impacts on flying vehicles. This technique holds potential for a range of applications, from enabling autonomous vehicles to adapt to slippery road conditions to improving the performance of drones in challenging wind conditions. By integrating learned dynamics and control-oriented structures, the researchers’ approach offers a more efficient and effective method for controlling robots, with implications for various types of dynamical systems in robotics.

Robot that could have improved control in different environments. Source.

Burrowing robots with origami feet

Robots have been improving in areas above ground for a while but are now also advancing in underground spaces, researchers from the University of California Berkeley and the University of California Santa Cruz have unveiled a new robotics approach that utilizes origami-inspired foldable feet to navigate granular environments. Drawing inspiration from biological systems and their anisotropic forces, this approach harnesses reciprocating burrowing techniques for precise directional motion. By employing simple linear actuators and leveraging passive anisotropic force responses, this study paves the way for streamlined robotic burrowing, shedding light on the prospect of simplified yet effective underground exploration and navigation. This innovative integration of origami principles into robotics opens the door to enhanced subterranean applications.

The prototype for the foot and its method for fabrication. Source.

Innovative processes in agricultural robotics

In the world of agriculture, a researcher from Carnegie Mellon University recently explored the synergy between scientific phenotyping and agricultural robotics in a Master’s Thesis. Their study delved into the vital role of accurate plant trait measurement in developing improved plant varieties, while also highlighting the promising realm of robotic plant manipulation in agriculture. Envisioning advanced farming practices, the researcher emphasizes tasks like pruning, pollination, and harvesting carried out by robots. By proposing innovative methods such as 3D cloud assessment for seed counting and vine segmentation, the study aims to streamline data collection for agricultural robotics. Additionally, the creation and use of 3D skeletal vine models exhibit the potential for optimizing grape quality and yield, paving the way for more efficient agricultural practices.

A Robotic data capture platform that was introduced. Source.

Soft robotic catheters could help improve minimally invasive surgery

Shifting our focus to surgery, a team of mechanical engineers and medical researchers from the University of Maryland, Johns Hopkins University, and the University of Maryland Medical School has developed a pneumatically actuated soft robotic catheter system to enhance control during minimally invasive surgeries. The system allows surgeons to insert and bend the catheter tip with high accuracy simultaneously, potentially improving outcomes in procedures that require navigating narrow and complex body spaces. The researchers’ approach simplifies the mechanical and control architecture through pneumatic actuation, enabling intuitive control of both bending and insertion without manual channel pressurization. The system has shown promise in accurately reaching cylindrical targets in tests, benefiting both novice and skilled surgeons.

Figure showing manufacturing and operation of soft robotic catheter tip using printing process for actuator and pneumatic pressurization to control catheter bending. Source.

Robotic system enhances poultry handling efficiency

Finally, in the food world, researchers have introduced an innovative robotic system designed to efficiently pick and place deformable poultry pieces from cluttered bins. The architecture integrates multiple modules, enabling precise manipulation of delicate poultry items. A comprehensive evaluation approach is proposed to assess the system’s performance across various modules, shedding light on successes and challenges. This advancement holds the potential to revolutionize meat processing and the broader food industry, addressing demands for increased automation.

An experimental setup. Source.

This array of recent developments spanning various fields shows the versatile and ever-evolving character of robotics technology, unveiling fresh avenues for its integration across different sectors. The steady evolution in robotics exemplifies the ongoing endeavors and the potential ramifications these advancements could have in the times ahead.

Sources:

  1. New Bioinspired Robot Flies, Rolls, Walks, and More. (2023, June 27). Center for Autonomous Systems and Technologies. Caltech University.
  2. Application of Path Planning for a Mobile Robot Assistance System Based on OpenStreetMap Data. Stahr, P., Maaß, J., & Gärtner, H. (2023). Robotics12(4), 113.
  3. A simpler method for learning to control a robot. (2023, July 26). MIT News | Massachusetts Institute of Technology.
  4. Efficient reciprocating burrowing with anisotropic origami feet. Kim, S., Treers, L. K., Huh, T. M., & Stuart, H. S. (2023, July 3). Frontiers.
  5. Phenotyping and Skeletonization for Agricultural Robotics. The Robotics Institute Carnegie Mellon University. (n.d.). Retrieved August 10, 2023.
  6. Pneumatically controlled soft robotic catheters offer accuracy, flexibility. (n.d.). Retrieved August 10, 2023.
  7. Advanced Robotic System for Efficient Pick-and-Place of Deformable Poultry in Cluttered Bin: A Comprehensive Evaluation Approach. Raja, R., Burusa, A. K., Kootstra, G., & van Henten, E. (2023, August 7). TechRviv.

Robo-Insight #2

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the 2nd edition of Robo-Insight, a biweekly robotics news update! In this post, we are excited to share a range of remarkable advancements in the field, showcasing progress in hazard mapping, surface crawling, pump controls, adaptive gripping, surgery, health assistance, and mineral extraction. These developments exemplify the continuous evolution and potential of robotics technology.

Advancing hazard mapping through robot collaboration

In the domain of hazard mapping, researchers have developed a collaborative scheme that utilizes both ground and aerial robots for hazard mapping of contaminated areas. The team improved the quality of density maps and lowered estimation errors by using a heterogeneous coverage control technique. In comparison to homogeneous alternatives, the strategy optimizes the deployment of robots based on each one’s unique characteristics, producing better estimation values and shorter operation times. This study has important ramifications for hazard response tactics, enabling collaborative robot systems to map hazardous compounds in a more effective and precise manner.

An environment where the model is simulated. Source.

A new bioinspired crawler robot

And speaking of ground robots, a special soft robot created by researchers from Carnegie Mellon University, combines the gait patterns of sea stars and geckos. This innovative robot demonstrates enhanced crawling ability on different surfaces, including slopes, by utilizing limb motion inspired by sea stars and adhesive patches inspired by geckos. The robot’s capability to adhere to surfaces and navigate is achieved through the integration of pneumatic actuators and specially designed gecko patches. This breakthrough in soft robotics holds potential for a wide range of applications, particularly in aquatic environments.

Bioinspiration images. Source.

New pumps for soft robots used for cocktails

Also in relation to soft robotics, Harvard University researchers have created a compact, soft peristaltic pump that addresses the major challenge of bulky and rigid power components in the field of soft robotics. The pump can handle a variety of fluids with various viscosities and has changeable pressure flow thanks to electrically operated dielectric elastomer actuators. The pump can be used to make cocktails. However, its application is also far greater as it can be used in manufacturing, biological therapies, and food handling because of its small size and adaptability. The advancement creates new opportunities for soft robots to carry out delicate jobs and maneuver through challenging conditions.

The soft pump that can power the robots. Source: Harvard

Robotic fingertips with shape-shifting capabilities

Shifting our focus to robotic gripping, using vitrimeric shape memory polymers, researchers from Brubotics, Vrije Universiteit Brussel, and Imec have created form-adaptive fingertips for robotic grippers. When subjected to particular circumstances, these polymers can reversibly alter their mechanical characteristics. For delicate objects, the fingertips are curled, while hard bodies have straight fingertips. By heating the shape-adaptive fingertips over their glass transition temperature and reshaping them with outside forces, the fingertips can be programmed. The researchers showed that the fingertips can grab and move objects of various forms, showing promise for adaptive sorting and production lines.

The Shape Adaption process, Source

ChatGPT used as a key tool for advancing robotic surgery

In the field of robotic surgery, to improve the accessibility and functionality of the da Vinci Surgical Robot, researchers at Wayne State University recently developed a ChatGPT-enabled interface. The ChatGPT language model’s strength enables the system to comprehend and react to the surgeon’s natural language commands. The implementation enables commands like tracking surgical tools, locating tools, taking photos, and starting/stopping video recording, providing straightforward and user-friendly interaction with the robot. Even though the system’s accuracy and usefulness showed promise, there are still issues to be resolved, such as network latency, errors, and control over model replies. The long-term effects and prospective influence of the natural language interface in surgical settings need to be assessed through additional research and development.

This shows the process the model goes through. Source

Wearable robot that could act as a personal health assistant

And speaking of robots in healthcare, researchers from the University of Maryland have developed Calico, a small wearable robot that can attach to clothing and perform various health assistance tasks. Weighing just 18 grams, Calico can act as a stethoscope, monitor vital signs, and guide users through fitness routines. By embedding neodymium magnets into the clothing track, the robot can determine its location and plan a path across the body. With a 20-gram payload capacity and speeds of up to 227 mm/s, Calico offers promising potential for healthcare monitoring and assistance in the future.

Calico over clothing. Source: University of Maryland

Swiss robots join forces for mineral exploration

Finally, in the realm of lunar material extraction, Legged robots are being developed by Swiss engineers from ETH Zurich as part of ground-breaking research to get them ready for mineral prospecting trips to the moon. The researchers are teaching the robots teamwork in order to guarantee their usefulness even in the case of faults. The team intends to maximize productivity and account for any shortcomings by combining experts and a generalist robot outfitted with a variety of measuring and analytical tools. The robots’ autonomy will also be improved by the researchers, allowing them to delegate jobs to one another while yet preserving control and intervention choices for operators.

An image of the trio of legged robots during a test in a Swiss gravel quarry. (Photograph: ETH Zurich / Takahiro Miki) Source: ETH Zurich

These recent advancements across different domains demonstrate the diverse and evolving nature of robotics technology, opening up new possibilities for applications in various industries. The continuous progress in robotics showcases the innovative efforts and potential impact that these technologies hold for the future.

Sources:

  1. Agung Nugroho Jati, Bambang Riyanto Trilaksono, Muhammad, E., & Widyawardana Adiprawita. (2023). Collaborative ground and aerial robots in hazard mapping based on heterogeneous coverage.
  2. Acharya, S., Roberts, P., Rane, T., Singhal, R., Hong, P., Ranade, V., Majidi, C., Webster-Wood, V., & Reeja-Jayan, B. (2023, June 16). Gecko adhesion based sea star crawler robot.
  3. Pump powers soft robots, makes cocktails. (n.d.). Seas.harvard.edu. Retrieved July 19, 2023.
  4. Kashef Tabrizian, S., Alabiso, W., Shaukat, U., Terryn, S., Rossegger, E., Brancart, J., Legrand, J., Schlögl, S., & Vanderborght, B. (2023, June 30). VITRIMERIC shape memory polymer-based fingertips for adaptive grasping. Frontiers.
  5. Pandya, A. (2023). ChatGPT-Enabled daVinci Surgical Robot Prototype: Advancements and Limitations. Robotics12(4), 97.
  6. A Wearable Robotic Assistant That’s All Over You. (n.d.). Robotics.umd.edu. Retrieved July 19, 2023.
  7. Robot team on lunar exploration tour. (2023, July 12).

     

Robo-Insight #1

Source: OpenAI’s DALL·E 2 with prompt “a hyperrealistic picture of a robot reading the news on a laptop at a coffee shop”

Welcome to the inaugural edition of Robo-Insight, a biweekly robotics news update! In this post, we are thrilled to present a range of remarkable advancements in the field, highlighting robotics progress in terrain traversability, shape morphing, object avoidance, mechanical memory, physics-based AI techniques, and new home robotics kits. These developments exemplify the continuous evolution and potential of robotics technology.

Four-legged robot traverses tricky terrains thanks to improved 3D vision

Recently, researchers from the University of California San Diego have given four-legged robots forward-facing depth cameras to enable them to clearly analyze the environment around and below them. The researchers utilized a model that obtains 3D information from short 2D frame videos. This data can also be compared with past images to estimate possible 3D transformation. Furthermore, their system is also self-checking, as it fuses information to give it a sort of short-term memory. Although the model does not guide the robot to a specific location, it enables the robot to traverse challenging terrain. The full paper, more videos, and the code (coming soon) can be found here.

Neural Volumetric Memory for Visual Locomotion Control

Mori3: A polygon shape-shifting robot for space travel

Along the lines of performing in difficult settings, Mori3, a robot that can change shape and interact with objects and people, was created by researchers at the Engineering School of EPFL. The modular Mori3 robot can change from 2D triangles into numerous 3D shapes by fusing digital polygon meshing with swarm behavior. The study helps highlight how modular robotics can be used for tasks like space exploration. The robot shows a great deal of versatility thanks to its adaptability and ability to assemble and disassemble. The Mori3 robots will be used by the crew to communicate with spacecraft and perform exterior repairs.

Mori3, the shape-shifter and modular origami robot

A step toward safe and reliable autopilots for flying

And speaking off-ground, a machine-learning method has recently been devised by MIT researchers to address challenging stabilize-avoid issues in autonomous aircraft. The method offers a tenfold increase in stability and outperforms previous techniques in terms of safety. The researchers were able to attain stable trajectories while avoiding obstacles by redefining the issue as a restricted optimization and employing a deep reinforcement learning technique. The method avoided crashing a simulated jet aircraft when it was flown in a tight space. The method may be used to create dynamic robot controllers and maintain stability and safety in mission-critical systems. Improvements to uncertainty accounting and hardware testing will be made in the future.

This video shows how the researchers used their technique to effectively fly a simulated jet aircraft in a scenario where it had to stabilize to a target near the ground while maintaining a very low altitude and staying within a narrow flight corridor. Courtesy of the researchers.

Metamaterials with built-in frustration have mechanical memory

A breakthrough in the development of materials with mechanical memory has been reached by researchers from the University of Amsterdam and ENS de Lyon. They created materials that can remember how they were previously bent or stretched and that have a special part or line that won’t change shape when pushed or pulled. This development in metamaterials may be used in mechanical and quantum computers, as well as in robotics and photonics. To create this mechanical memory effect, the researchers used the idea of non-orientable order, which is present in items like Möbius strips.

Metamaterials with built-in frustration have mechanical memory

Hybrid AI-powered computer vision combines physics and Big Data

On the topic of enhancing computer vision technology, researchers from UCLA and the United States Army Research Laboratory have developed a hybrid strategy that integrates physics-based awareness into data-driven algorithms. The article presents multiple approaches to integrate physics and data in AI like physics-based AI datasets, network designs, and network loss functions. The hybrid technique has demonstrated promising outcomes in image enhancement, motion prediction, and object tracking. Deep learning-based AI systems may eventually be able to autonomously master the rules of physics, according to the researchers.

Achuta Kadambi/UCLA
Graphic showing two techniques to incorporate physics into machine learning pipelines — residual physics (top) and physical fusion (bottom). Source.

myCobot 320 AI Kit 2023

On the industry side, the myCobot 320 AI Kit 2023, a ground-breaking robotic arm built for user-programmable development, was just released by Elephant Robotics. It offers flexibility for business, research, and creative endeavors because of its increased working radius, higher payload capacity, and intelligent grasping abilities. The kit features considerable advancements over earlier designs, supports five sophisticated vision recognition algorithms, includes grippers, and comes with user-friendly visualization software.

Bowl Bot

Finally, the Bowl Bot is an autonomous, self-cleaning robot recently created by Nala Robotics that can prepare a wide range of individualized food bowls. It offers a wide variety of 28 ingredients for bases, proteins, garnishes, and sauces in a small footprint. The Bowl Bot, which is outfitted with cutting-edge AI and vision technologies, runs at rapid speeds while upholding cleanliness and eliminating cross-contamination with its self-cleaning system.

These remarkable breakthroughs are merely a glimpse into the vibrant and dynamic world of robotics. The field continues to inspire and push boundaries, propelling us toward a future where robotics technology plays an increasingly pivotal role. Stay tuned for more exciting updates in our next edition!

Sources:

  1. “Four-Legged Robot Traverses Tricky Terrains Thanks to Improved 3D Vision.” Accessed 1 July 2023.
  2. Christoph H. Belke, Kevin Holdcroft, Alexander Sigrist, Jamie Paik. Morphological flexibility in robotic systems through physical polygon meshing. Nature Machine Intelligence, 2023; DOI: 10.1038/s42256-023-00676-8
  3. “A Step toward Safe and Reliable Autopilots for Flying.” MIT News | Massachusetts Institute of Technology, Accessed 12 June 2023
  4. Amsterdam, Universiteit van. “Metamaterials with Built-in Frustration Have Mechanical Memory.” University of Amsterdam. Accessed 1 July 2023.
  5. Hybrid AI-Powered Computer Vision Combines Physics and Big Data. Accessed 1 July 2023.
  6. Empowering Research and Development: Introducing the MyCobot 320 AI Kit 2023 by Elephant Robotics. Accessed 1 July 2023.
  7. “The Bowls, a Fully Automated Robotic Salad Bowl Maker – Nala Robotics.”. Accessed 1 July 2023.