For retail warehouses, processing this flood of returns tests capacities and efficiency. But technologies like warehouse automation and robotics can transform returns management into a streamlined operation.
Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.
With our increasing dependence on electronic devices, it is imperative that these systems seamlessly operate within their electromagnetic environments. Addressing Electromagnetic Interference (EMI) and fostering Electromagnetic Compatibility (EMC) emerge as critical concerns
Over the past four years, a research team at the Artificial and Mechanical Intelligence (AMI) lab at the Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in Genova (Italy) has developed advanced avatar technologies, known as the iCub3 system, in continuous testing with real-world scenarios.
During the demonstration, the S2 will be mounted external to the International Space Station (ISS) on the Nanoracks Bishop Airlock and perform on-orbit services, including maintenance, inspection, and life-extension operations for satellites.
Researchers have published a strategy for identifying new targets for immunotherapy through artificial intelligence (AI).
IntelliGenes analyzes genomic data to discover biomarkers associated with health traits.
“Make No Mistake”: Clock Freeze No Indicator of Stability; Bulletin of the Atomic Scientists Cites Wars, Multi-Dimensional Nuclear Threats, Failures to Address the Climate Crisis, Bio-Threats, and Artificial Intelligence.
In this blog, you’ll learn about the key role played by multi-camera synchronization, how it works, and examples of autonomous vehicles using this path-breaking technology.
The Helix 511 delivers ultra-reliable, fanless computing using Intel® 12th Generation performance hybrid processing. The system is ideal for real-time decision making in robotics, with support for 4 simultaneous serial connections. Thanks to its fanless design, the Helix 511 is resistant to damage from airborne particulate, extreme temperatures, shock and vibration, and electromagnetic interference.
OnLogic Karbon 430 Fanless Rugged Computer The K430 packs the power and advanced IoT capabilities of modern Intel processing into a low profile, highly customizable, rugged fanless system built for the challenges of the IoT Edge. Internal components are protected from dust, debris, chemicals, and moisture thanks to fanless and ventless cooling. The Karbon 430 features an operating temperature range of -40° to 70°C, 9~48 V power input, and zero moving parts, all of which help to ensure a long system lifespan.
We typically don't think about it while doing it, but walking is a complicated task. Controlled by our nervous system, our bones, joints, muscles, tendons, ligaments and other connective tissues (i.e., the musculoskeletal system) must move in coordination and respond to unexpected changes or disturbances at varying speeds in a highly efficient manner. Replicating this in robotic technologies is no small feat.
The software that forms the backbone of Kepler's proprietary NEBULA system enables the robot to interact with the surrounding environment in real time, addressing challenges in visual, auditory and sensory perception.
A team of biomedical engineers and roboticists affiliated with multiple institutions across China has developed a type of small, soft robot that can swim through water and test for contaminants. In their paper published in the journal Science Advances, the team notes that the robot can be powered and controlled using radio waves.
As people age, they gradually lose muscle strength in their arms and legs, making it difficult for them to participate in leisure activities such as hiking and traveling, and they often need to rely on assistive devices such as canes and wheelchairs for mobility. However, these devices do not improve muscle strength, so wearable robots that can compensate for the lack of muscle strength are attracting attention as an innovative technology to improve the health and quality of life of the elderly.