Researchers at North Carolina State University have demonstrated a caterpillar-like soft robot that can move forward, backward and dip under narrow spaces. The caterpillar-bot's movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction.
Artificial muscles are a progressing technology that could one day enable robots to function like living organisms. Such muscles open up new possibilities for how robots can shape the world around us; from assistive wearable devices that can redefine our physical abilities at old age, to rescue robots that can navigate rubble in search of the missing. But just because artificial muscles can have a strong societal impact during use, doesn't mean they have to leave a strong environmental impact after use.
Robots are currently employed in industrial sites and fields, including disaster rescue, medicine, security, and national defense. Conventional metal-based robots exert strong operating power due to rigid body construction with joints connected to actuators such as motors. However, they may have difficulty with flexible movements and can cause harm during malfunctions. Recently, "soft robots" made of smooth and flexible materials have emerged, but they may be more difficult to control than metal-based robots.
Unmanned aerial vehicles (UAVs), also known as drones, can help humans to tackle a variety of real-world problems; for instance, assisting them during military operations and search and rescue missions, delivering packages or exploring environments that are difficult to access. Conventional UAV designs, however, can have some shortcomings that limit their use in particular settings.
A quick search of stereotypes of New Yorkers yields one characteristic that turns up most frequently: rudeness.
More than five million people in the United States live with some form of paralysis and may encounter difficulties completing everyday tasks, like grabbing a glass of water or putting on clothes. New research from Carnegie Mellon University's Robotics Institute (RI) aims to increase autonomy for individuals with such motor impairments by introducing a head-worn device that will help them control a mobile manipulator.
Researchers from the University of Technology Sydney (UTS) have developed biosensor technology that will allow people to operate devices such as robots and machines solely through thought control.
A group of engineers at CREATE Lab (Computational Robot Design & Fabrication Lab), EPFL, in Lausanne Switzerland, has designed and built a robot arm that is capable of designing paper airplanes, building them and then launching them to see how well they work. In their paper published in the journal Scientific Reports, Nana Obayashi, Kai Junge, Stefan Ilić and Josie Hughes describe their robotic system.
The white-colored humanoid "Garmi" does not look much different from a typical robot—it stands on a platform with wheels and is equipped with a black screen on which two blue circles acting as eyes are attached.
To effectively tackle everyday tasks, robots should be able to detect the properties and characteristics of objects in their surroundings, so that they can grasp and manipulate them accordingly. Humans naturally achieve this using their sense of touch and roboticists have thus been trying to provide robots with similar tactile sensing capabilities.
A system of robots that harvest and transport crops on their own without human assistance has been developed for use in agricultural facilities such as smart farms.
Animals have always been a great inspiration for robotic systems, as they offer fascinating natural examples of how different body structures can produce specific movements and locomotion styles. While most animal-inspired robots are inspired by legged animal species, some roboticists have been exploring the potential of robots with bodies that resemble those of other animals, including snakes.
Customers at Lowe's stores across Philadelphia have encountered an unexpected sight in the parking lots over the last month—a 5-foot-tall, egg-shaped security robot that makes a cosmic whirring sound as it glides across the pavement.
Bumblebees are clumsy fliers. It is estimated that a foraging bee bumps into a flower about once per second, which damages its wings over time. Yet despite having many tiny rips or holes in their wings, bumblebees can still fly.
The Autonomous Systems group at the Department of Energy's Oak Ridge National Laboratory is in high demand as it incorporates remote sensing into projects needing a bird's-eye perspective.