Page 9 of 12
1 7 8 9 10 11 12

Surgical technique improves sensation, control of prosthetic limb

Two agonist-antagonist myoneural interface devices (AMIs) were surgically created in the patient’s residual limb: One was electrically linked to the robotic ankle joint, and the other to the robotic subtalar joint.
Image: MIT Media Lab/Biomechatronics group. Original artwork by Stephanie Ku.

By Helen Knight

Humans can accurately sense the position, speed, and torque of their limbs, even with their eyes shut. This sense, known as proprioception, allows humans to precisely control their body movements.

Despite significant improvements to prosthetic devices in recent years, researchers have been unable to provide this essential sensation to people with artificial limbs, limiting their ability to accurately control their movements.

Researchers at the Center for Extreme Bionics at the MIT Media Lab have invented a new neural interface and communication paradigm that is able to send movement commands from the central nervous system to a robotic prosthesis, and relay proprioceptive feedback describing movement of the joint back to the central nervous system in return.

This new paradigm, known as the agonist-antagonist myoneural interface, involves a novel surgical approach to limb amputation in which dynamic muscle relationships are preserved within the amputated limb. The AMI was validated in extensive preclinical experimentation at MIT prior to its first surgical implementation in a human patient at Brigham and Women’s Faulkner Hospital.

In a paper published today in Science Translational Medicine, the researchers describe the first human implementation of the agonist-antagonist myoneural interface (AMI), in a person with below-knee amputation.

The paper represents the first time information on joint position, speed, and torque has been fed from a prosthetic limb into the nervous system, according to senior author and project director Hugh Herr, a professor of media arts and sciences at the MIT Media Lab.

“Our goal is to close the loop between the peripheral nervous system’s muscles and nerves, and the bionic appendage,” says Herr.

To do this, the researchers used the same biological sensors that create the body’s natural proprioceptive sensations.

The AMI consists of two opposing muscle-tendons, known as an agonist and an antagonist, which are surgically connected in series so that when one muscle contracts and shortens — upon either volitional or electrical activation — the other stretches, and vice versa.

This coupled movement enables natural biological sensors within the muscle-tendon to transmit electrical signals to the central nervous system, communicating muscle length, speed, and force information, which is interpreted by the brain as natural joint proprioception. 

This is how muscle-tendon proprioception works naturally in human joints, Herr says.

“Because the muscles have a natural nerve supply, when this agonist-antagonist muscle movement occurs information is sent through the nerve to the brain, enabling the person to feel those muscles moving, both their position, speed, and load,” he says.

By connecting the AMI with electrodes, the researchers can detect electrical pulses from the muscle, or apply electricity to the muscle to cause it to contract.

“When a person is thinking about moving their phantom ankle, the AMI that maps to that bionic ankle is moving back and forth, sending signals through the nerves to the brain, enabling the person with an amputation to actually feel their bionic ankle moving throughout the whole angular range,” Herr says.

Decoding the electrical language of proprioception within nerves is extremely difficult, according to Tyler Clites, first author of the paper and graduate student lead on the project.

“Using this approach, rather than needing to speak that electrical language ourselves, we use these biological sensors to speak the language for us,” Clites says. “These sensors translate mechanical stretch into electrical signals that can be interpreted by the brain as sensations of position, speed, and force.”

The AMI was first implemented surgically in a human patient at Brigham and Women’s Faulkner Hospital, Boston, by Matthew Carty, one of the paper’s authors, a surgeon in the Division of Plastic and Reconstructive Surgery, and an MIT research scientist.

In this operation, two AMIs were constructed in the residual limb at the time of primary below-knee amputation, with one AMI to control the prosthetic ankle joint, and the other to control the prosthetic subtalar joint.

“We knew that in order for us to validate the success of this new approach to amputation, we would need to couple the procedure with a novel prosthesis that could take advantage of the additional capabilities of this new type of residual limb,” Carty says. “Collaboration was critical, as the design of the procedure informed the design of the robotic limb, and vice versa.”

Toward this end, an advanced prosthetic limb was built at MIT and electrically linked to the patient’s peripheral nervous system using electrodes placed over each AMI muscle following the amputation surgery.

The researchers then compared the movement of the AMI patient with that of four people who had undergone a traditional below-knee amputation procedure, using the same advanced prosthetic limb.

They found that the AMI patient had more stable control over movement of the prosthetic device and was able to move more efficiently than those with the conventional amputation. They also found that the AMI patient quickly displayed natural, reflexive behaviors such as extending the toes toward the next step when walking down a set of stairs.

These behaviors are essential to natural human movement and were absent in all of the people who had undergone a traditional amputation.

What’s more, while the patients with conventional amputation reported feeling disconnected to the prosthesis, the AMI patient quickly described feeling that the bionic ankle and foot had become a part of their own body.

“This is pretty significant evidence that the brain and the spinal cord in this patient adopted the prosthetic leg as if it were their biological limb, enabling those biological pathways to become active once again,” Clites says. “We believe proprioception is fundamental to that adoption.”

It is difficult for an individual with a lower limb amputation to gain a sense of embodiment with their artificial limb, according to Daniel Ferris, the Robert W. Adenbaum Professor of Engineering Innovation at the University of Florida, who was not involved in the research.

“This is ground breaking. The increased sense of embodiment by the amputee subject is a powerful result of having better control of and feedback from the bionic limb,” Ferris says. “I expect that we will see individuals with traumatic amputations start to seek out this type of surgery and interface for their prostheses — it could provide a much greater quality of life for amputees.”

The researchers have since carried out the AMI procedure on nine other below-knee amputees and are planning to adapt the technique for those needing above-knee, below-elbow, and above-elbow amputations.

“Previously, humans have used technology in a tool-like fashion,” Herr says. “We are now starting to see a new era of human-device interaction, of full neurological embodiment, in which what we design becomes truly part of us, part of our identity.”

Fleet of autonomous boats could service some cities, reducing road traffic

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Senseable City Lab have designed a fleet of autonomous boats that offer high maneuverability and precise control.
Courtesy of the researchers
By Rob Matheson

The future of transportation in waterway-rich cities such as Amsterdam, Bangkok, and Venice — where canals run alongside and under bustling streets and bridges — may include autonomous boats that ferry goods and people, helping clear up road congestion.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Senseable City Lab in the Department of Urban Studies and Planning (DUSP), have taken a step toward that future by designing a fleet of autonomous boats that offer high maneuverability and precise control. The boats can also be rapidly 3-D printed using a low-cost printer, making mass manufacturing more feasible.

The boats could be used to taxi people around and to deliver goods, easing street traffic. In the future, the researchers also envision the driverless boats being adapted to perform city services overnight, instead of during busy daylight hours, further reducing congestion on both roads and canals.

“Imagine shifting some of infrastructure services that usually take place during the day on the road — deliveries, garbage management, waste management — to the middle of the night, on the water, using a fleet of autonomous boats,” says CSAIL Director Daniela Rus, co-author on a paper describing the technology that’s being presented at this week’s IEEE International Conference on Robotics and Automation.

Moreover, the boats — rectangular 4-by-2-meter hulls equipped with sensors, microcontrollers, GPS modules, and other hardware — could be programmed to self-assemble into floating bridges, concert stages, platforms for food markets, and other structures in a matter of hours. “Again, some of the activities that are usually taking place on land, and that cause disturbance in how the city moves, can be done on a temporary basis on the water,” says Rus, who is the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science.

The boats could also be equipped with environmental sensors to monitor a city’s waters and gain insight into urban and human health.

Co-authors on the paper are: first author Wei Wang, a joint postdoc in CSAIL and the Senseable City Lab; Luis A. Mateos and Shinkyu Park, both DUSP postdocs; Pietro Leoni, a research fellow, and Fábio Duarte, a research scientist, both in DUSP and the Senseable City Lab; Banti Gheneti, a graduate student in the Department of Electrical Engineering and Computer Science; and Carlo Ratti, a principal investigator and professor of the practice in the DUSP and director of the MIT Senseable City Lab.

Better design and control

The work was conducted as part of the “Roboat” project, a collaboration between the MIT Senseable City Lab and the Amsterdam Institute for Advanced Metropolitan Solutions (AMS). In 2016, as part of the project, the researchers tested a prototype that cruised around the city’s canals, moving forward, backward, and laterally along a preprogrammed path.

The ICRA paper details several important new innovations: a rapid fabrication technique, a more efficient and agile design, and advanced trajectory-tracking algorithms that improve control, precision docking and latching, and other tasks. 

To make the boats, the researchers 3-D-printed a rectangular hull with a commercial printer, producing 16 separate sections that were spliced together. Printing took around 60 hours. The completed hull was then sealed by adhering several layers of fiberglass.

Integrated onto the hull are a power supply, Wi-Fi antenna, GPS, and a minicomputer and microcontroller. For precise positioning, the researchers incorporated an indoor ultrasound beacon system and outdoor real-time kinematic GPS modules, which allow for centimeter-level localization, as well as an inertial measurement unit (IMU) module that monitors the boat’s yaw and angular velocity, among other metrics.

The boat is a rectangular shape, instead of the traditional kayak or catamaran shapes, to allow the vessel to move sideways and to attach itself to other boats when assembling other structures. Another simple yet effective design element was thruster placement. Four thrusters are positioned in the center of each side, instead of at the four corners, generating forward and backward forces. This makes the boat more agile and efficient, the researchers say.

The team also developed a method that enables the boat to track its position and orientation more quickly and accurately. To do so, they developed an efficient version of a nonlinear model predictive control (NMPC) algorithm, generally used to control and navigate robots within various constraints.

The NMPC and similar algorithms have been used to control autonomous boats before. But typically those algorithms are tested only in simulation or don’t account for the dynamics of the boat. The researchers instead incorporated in the algorithm simplified nonlinear mathematical models that account for a few known parameters, such as drag of the boat, centrifugal and Coriolis forces, and added mass due to accelerating or decelerating in water. The researchers also used an identification algorithm that then identifies any unknown parameters as the boat is trained on a path.

Finally, the researchers used an efficient predictive-control platform to run their algorithm, which can rapidly determine upcoming actions and increases the algorithm’s speed by two orders of magnitude over similar systems. While other algorithms execute in about 100 milliseconds, the researchers’ algorithm takes less than 1 millisecond.

Testing the waters

To demonstrate the control algorithm’s efficacy, the researchers deployed a smaller prototype of the boat along preplanned paths in a swimming pool and in the Charles River. Over the course of 10 test runs, the researchers observed average tracking errors — in positioning and orientation — smaller than tracking errors of traditional control algorithms.

That accuracy is thanks, in part, to the boat’s onboard GPS and IMU modules, which determine position and direction, respectively, down to the centimeter. The NMPC algorithm crunches the data from those modules and weighs various metrics to steer the boat true. The algorithm is implemented in a controller computer and regulates each thruster individually, updating every 0.2 seconds.

“The controller considers the boat dynamics, current state of the boat, thrust constraints, and reference position for the coming several seconds, to optimize how the boat drives on the path,” Wang says. “We can then find optimal force for the thrusters that can take the boat back to the path and minimize errors.”

The innovations in design and fabrication, as well as faster and more precise control algorithms, point toward feasible driverless boats used for transportation, docking, and self-assembling into platforms, the researchers say.

A next step for the work is developing adaptive controllers to account for changes in mass and drag of the boat when transporting people and goods. The researchers are also refining the controller to account for wave disturbances and stronger currents.

“We actually found that the Charles River has much more current than in the canals in Amsterdam,” Wang says. “But there will be a lot of boats moving around, and big boats will bring big currents, so we still have to consider this.”

The work was supported by a grant from AMS.

Making driverless cars change lanes more like human drivers do

At the International Conference on Robotics and Automation tomorrow, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new lane-change algorithm.
By Larry Hardesty

In the field of self-driving cars, algorithms for controlling lane changes are an important topic of study. But most existing lane-change algorithms have one of two drawbacks: Either they rely on detailed statistical models of the driving environment, which are difficult to assemble and too complex to analyze on the fly; or they’re so simple that they can lead to impractically conservative decisions, such as never changing lanes at all.

At the International Conference on Robotics and Automation tomorrow, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new lane-change algorithm that splits the difference. It allows for more aggressive lane changes than the simple models do but relies only on immediate information about other vehicles’ directions and velocities to make decisions.

“The motivation is, ‘What can we do with as little information as possible?’” says Alyssa Pierson, a postdoc at CSAIL and first author on the new paper. “How can we have an autonomous vehicle behave as a human driver might behave? What is the minimum amount of information the car needs to elicit that human-like behavior?”

Pierson is joined on the paper by Daniela Rus, the Viterbi Professor of Electrical Engineering and Computer Science; Sertac Karaman, associate professor of aeronautics and astronautics; and Wilko Schwarting, a graduate student in electrical engineering and computer science.

“The optimization solution will ensure navigation with lane changes that can model an entire range of driving styles, from conservative to aggressive, with safety guarantees,” says Rus, who is the director of CSAIL.

One standard way for autonomous vehicles to avoid collisions is to calculate buffer zones around the other vehicles in the environment. The buffer zones describe not only the vehicles’ current positions but their likely future positions within some time frame. Planning lane changes then becomes a matter of simply staying out of other vehicles’ buffer zones.

For any given method of computing buffer zones, algorithm designers must prove that it guarantees collision avoidance, within the context of the mathematical model used to describe traffic patterns. That proof can be complex, so the optimal buffer zones are usually computed in advance. During operation, the autonomous vehicle then calls up the precomputed buffer zones that correspond to its situation.

The problem is that if traffic is fast enough and dense enough, precomputed buffer zones may be too restrictive. An autonomous vehicle will fail to change lanes at all, whereas a human driver would cheerfully zip around the roadway.

With the MIT researchers’ system, if the default buffer zones are leading to performance that’s far worse than a human driver’s, the system will compute new buffer zones on the fly — complete with proof of collision avoidance.

That approach depends on a mathematically efficient method of describing buffer zones, so that the collision-avoidance proof can be executed quickly. And that’s what the MIT researchers developed.

They begin with a so-called Gaussian distribution — the familiar bell-curve probability distribution. That distribution represents the current position of the car, factoring in both its length and the uncertainty of its location estimation.

Then, based on estimates of the car’s direction and velocity, the researchers’ system constructs a so-called logistic function. Multiplying the logistic function by the Gaussian distribution skews the distribution in the direction of the car’s movement, with higher speeds increasing the skew.

The skewed distribution defines the vehicle’s new buffer zone. But its mathematical description is so simple — using only a few equation variables — that the system can evaluate it on the fly.

The researchers tested their algorithm in a simulation including up to 16 autonomous cars driving in an environment with several hundred other vehicles.

“The autonomous vehicles were not in direct communication but ran the proposed algorithm in parallel without conflict or collisions,” explains Pierson. “Each car used a different risk threshold that produced a different driving style, allowing us to create conservative and aggressive drivers. Using the static, precomputed buffer zones would only allow for conservative driving, whereas our dynamic algorithm allows for a broader range of driving styles.”

This project was supported, in part, by the Toyota Research Institute and the Office of Naval Research.

Researchers develop virtual-reality testing ground for drones

MIT engineers have developed a new virtual-reality training system for drones that enables a vehicle to “see” a rich, virtual environment while flying in an empty physical space.
Image: William Litant
By Jennifer Chu

Training drones to fly fast, around even the simplest obstacles, is a crash-prone exercise that can have engineers repairing or replacing vehicles with frustrating regularity.

Now MIT engineers have developed a new virtual-reality training system for drones that enables a vehicle to “see” a rich, virtual environment while flying in an empty physical space.

The system, which the team has dubbed “Flight Goggles,” could significantly reduce the number of crashes that drones experience in actual training sessions. It can also serve as a virtual testbed for any number of environments and conditions in which researchers might want to train fast-flying drones.

“We think this is a game-changer in the development of drone technology, for drones that go fast,” says Sertac Karaman, associate professor of aeronautics and astronautics at MIT. “If anything, the system can make autonomous vehicles more responsive, faster, and more efficient.”

Karaman and his colleagues will present details of their virtual training system at the IEEE International Conference on Robotics and Automation next week. Co-authors include Thomas Sayre-McCord, Winter Guerra, Amado Antonini, Jasper Arneberg, Austin Brown, Guilherme Cavalheiro, Dave McCoy, Sebastian Quilter, Fabian Riether, Ezra Tal, Yunus Terzioglu, and Luca Carlone of MIT’s Laboratory for Information and Decision Systems, along with Yajun Fang of MIT’s Computer Science and Artificial Intelligence Laboratory, and Alex Gorodetsky of Sandia National Laboratories.

Pushing boundaries

Karaman was initially motivated by a new, extreme robo-sport: competitive drone racing, in which remote-controlled drones, driven by human players, attempt to out-fly each other through an intricate maze of windows, doors, and other obstacles. Karaman wondered: Could an autonomous drone be trained to fly just as fast, if not faster, than these human-controlled vehicles, with even better precision and control?

“In the next two or three years, we want to enter a drone racing competition with an autonomous drone, and beat the best human player,” Karaman says. To do so, the team would have to develop an entirely new training regimen.

Currently, training autonomous drones is a physical task: Researchers fly drones in large, enclosed testing grounds, in which they often hang large nets to catch any careening vehicles. They also set up props, such as windows and doors, through which a drone can learn to fly. When vehicles crash, they must be repaired or replaced, which delays development and adds to a project’s cost.

Karaman says testing drones in this way can work for vehicles that are not meant to fly fast, such as drones that are programmed to slowly map their surroundings. But for fast-flying vehicles that need to process visual information quickly as they fly through an environment, a new training system is necessary.

“The moment you want to do high-throughput computing and go fast, even the slightest changes you make to its environment will cause the drone to crash,” Karaman says. “You can’t learn in that environment. If you want to push boundaries on how fast you can go and compute, you need some sort of virtual-reality environment.”

Flight Goggles

The team’s new virtual training system comprises a motion capture system, an image rendering program, and electronics that enable the team to quickly process images and transmit them to the drone.

The actual test space — a hangar-like gymnasium in MIT’s new drone-testing facility in Building 31 — is lined with motion-capture cameras that track the orientation of the drone as it’s flying.

With the image-rendering system, Karaman and his colleagues can draw up photorealistic scenes, such as a loft apartment or a living room, and beam these virtual images to the drone as it’s flying through the empty facility.    

“The drone will be flying in an empty room, but will be ‘hallucinating’ a completely different environment, and will learn in that environment,” Karaman explains.

The virtual images can be processed by the drone at a rate of about 90 frames per second — around three times as fast as the human eye can see and process images. To enable this, the team custom-built circuit boards that integrate a powerful embedded supercomputer, along with an inertial measurement unit and a camera. They fit all this hardware into a small, 3-D-printed nylon and carbon-fiber-reinforced drone frame. 

A crash course

The researchers carried out a set of experiments, including one in which the drone learned to fly through a virtual window about twice its size. The window was set within a virtual living room. As the drone flew in the actual, empty testing facility, the researchers beamed images of the living room scene, from the drone’s perspective, back to the vehicle. As the drone flew through this virtual room, the researchers tuned a navigation algorithm, enabling the drone to learn on the fly.

Over 10 flights, the drone, flying at around 2.3 meters per second (5 miles per hour), successfully flew through the virtual window 361 times, only “crashing” into the window three times, according to positioning information provided by the facility’s motion-capture cameras. Karaman points out that, even if the drone crashed thousands of times, it wouldn’t make much of an impact on the cost or time of development, as it’s crashing in a virtual environment and not making any physical contact with the real world.

In a final test, the team set up an actual window in the test facility, and turned on the drone’s onboard camera to enable it to see and process its actual surroundings. Using the navigation algorithm that the researchers tuned in the virtual system, the drone, over eight flights, was able to fly through the real window 119 times, only crashing or requiring human intervention six times.

“It does the same thing in reality,” Karaman says. “It’s something we programmed it to do in the virtual environment, by making mistakes, falling apart, and learning. But we didn’t break any actual windows in this process.”

He says the virtual training system is highly malleable. For instance, researchers can pipe in their own scenes or layouts in which to train drones, including detailed, drone-mapped replicas of actual buildings — something the team is considering doing with MIT’s Stata Center. The training system may also be used to test out new sensors, or specifications for existing sensors, to see how they might handle on a fast-flying drone.

“We could try different specs in this virtual environment and say, ‘If you build a sensor with these specs, how would it help a drone in this environment?’’ Karaman says.

The system can also be used to train drones to fly safely around humans. For instance, Karaman envisions splitting the actual test facility in two, with a drone flying in one half, while a human, wearing a motion-capture suit, walks in the other half. The drone would “see” the human in virtual reality as it flies around its own space. If it crashes into the person, the result is virtual, and harmless.

“One day, when you’re really confident, you can do it in reality, and have a drone flying around a person as they’re running, in a safe way,” Karaman says. “There are a lot of mind-bending experiments you can do in this whole virtual reality thing. Over time, we will showcase all the things you can do.”

This research was supported, in part, by U.S. Office of Naval Research, MIT Lincoln Laboratory, and the NVIDIA Corporation.

Albatross robot takes flight

An albatross glider, designed by MIT engineers, skims the Charles River.
Photo: Gabriel Bousquet

By Jennifer Chu

MIT engineers have designed a robotic glider that can skim along the water’s surface, riding the wind like an albatross while also surfing the waves like a sailboat.

In regions of high wind, the robot is designed to stay aloft, much like its avian counterpart. Where there are calmer winds, the robot can dip a keel into the water to ride like a highly efficient sailboat instead.

The robotic system, which borrows from both nautical and biological designs, can cover a given distance using one-third as much wind as an albatross and traveling 10 times faster than a typical sailboat. The glider is also relatively lightweight, weighing about 6 pounds. The researchers hope that in the near future, such compact, speedy robotic water-skimmers may be deployed in teams to survey large swaths of the ocean.

“The oceans remain vastly undermonitored,” says Gabriel Bousquet, a former postdoc in MIT’s Department of Aeronautics and Astronautics, who led the design of the robot as part of his graduate thesis. “In particular, it’s very important to understand the Southern Ocean and how it is interacting with climate change. But it’s very hard to get there. We can now use the energy from the environment in an efficient way to do this long-distance travel, with a system that remains small-scale.”

Bousquet will present details of the robotic system this week at IEEE’s International Conference on Robotics and Automation, in Brisbane, Australia. His collaborators on the project are Jean-Jacques Slotine, professor of mechanical engineering and information sciences and of brain sciences; and Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering.

The physics of speed

Last year, Bousquet, Slotine, and Triantafyllou published a study on the dynamics of albatross flight, in which they identified the mechanics that enable the tireless traveler to cover vast distances while expending minimal energy. The key to the bird’s marathon voyages is its ability to ride in and out of high- and low-speed layers of air.

Specifically, the researchers found the bird is able to perform a mechanical process called a “transfer of momentum,” in which it takes momentum from higher, faster layers of air, and by diving down transfers that momentum to lower, slower layers, propelling itself without having to continuously flap its wings.

Interestingly, Bousquet observed that the physics of albatross flight is very similar to that of sailboat travel. Both the albatross and the sailboat transfer momentum in order to keep moving. But in the case of the sailboat, that transfer occurs not between layers of air, but between the air and water.

“Sailboats take momentum from the wind with their sail, and inject it into the water by pushing back with their keel,” Bousquet explains. “That’s how energy is extracted for sailboats.”

An albatross glider, designed by MIT engineers, skims the Charles River.

Bousquet also realized that the speed at which both an albatross and a sailboat can travel depends upon the same general equation, related to the transfer of momentum. Essentially, both the bird and the boat can travel faster if they can either stay aloft easily or interact with two layers, or mediums, of very different speeds.

The albatross does well with the former, as its wings provide natural lift, though it flies between air layers with a relatively small difference in windspeeds. Meanwhile, the sailboat excels at the latter, traveling between two mediums of very different speeds — air versus water — though its hull creates a lot of friction and prevents it from getting much speed.  Bousquet wondered: What if a vehicle could be designed to perform well in both metrics, marrying the high-speed qualities of both the albatross and the sailboat?

“We thought, how could we take the best from both worlds?” Bousquet says.

Out on the water

The team drafted a design for such a hybrid vehicle, which ultimately resembled an autonomous glider with a 3-meter wingspan, similar to that of a typical albatross. They added a tall, triangular sail, as well as a slender, wing-like keel. They then performed some mathematical modeling to predict how such a design would travel.

According to their calculations, the wind-powered vehicle would only need relatively calm winds of about 5 knots to zip across waters at a velocity of about 20 knots, or 23 miles per hour.

“We found that in light winds you can travel about three to 10 times faster than a traditional sailboat, and you need about half as much wind as an albatross, to reach 20 knots,” Bousquet says. “It’s very efficient, and you can travel very fast, even if there is not too much wind.”

The team built a prototype of their design, using a glider airframe designed by Mark Drela, professor of aeronautics and astronautics at MIT. To the bottom of the glider they added a keel, along with various instruments, such as GPS, inertial measurement sensors, auto-pilot instrumentation, and ultrasound, to track the height of the glider above the water.

“The goal here was to show we can control very precisely how high we are above the water, and that we can have the robot fly above the water, then down to where the keel can go under the water to generate a force, and the plane can still fly,” Bousquet says.

The researchers decided to test this “critical maneuver” — the act of transitioning between flying in the air and dipping the keel down to sail in the water. Accomplishing this move doesn’t necessarily require a sail, so Bousquet and his colleagues decided not to include one in order to simplify preliminary experiments.

In the fall of 2016, the team put its design to the test, launching the robot from the MIT Sailing Pavilion out onto the Charles River. As the robot lacked a sail and any mechanism to get it started, the team hung it from a fishing rod attached to a whaler boat. With this setup, the boat towed the robot along the river until it reached about 20 miles per hour, at which point the robot autonomously “took off,” riding the wind on its own.

Once it was flying autonomously, Bousquet used a remote control to give the robot a “down” command, prompting it to dip low enough to submerge its keel in the river. Next, he adjusted the direction of the keel, and observed that the robot was able to steer away from the boat as expected. He then gave a command for the robot to fly back up, lifting the keel out of the water.

“We were flying very close to the surface, and there was very little margin for error — everything had to be in place,” Bousquet says. “So it was very high stress, but very exciting.”

The experiments, he says, prove that the team’s conceptual device can travel successfully, powered by the wind and the water. Eventually, he envisions fleets of such vehicles autonomously and efficiently monitoring large expanses of the ocean.

“Imagine you could fly like an albatross when it’s really windy, and then when there’s not enough wind, the keel allows you to sail like a sailboat,” Bousquet says. “This dramatically expands the kinds of regions where you can go.”

This research was supported, in part, by the Link Ocean Instrumentation fellowship.

Self-driving cars for country roads


A team of MIT researchers tested MapLite on a Toyota Prius outfitted with a range of LIDAR and IMU sensors.
Photo courtesy of CSAIL.

By Adam Conner-Simons | Rachel Gordon

Uber’s recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. The reality is that there aren’t many places where today’s self-driving cars can actually reliably drive. Companies like Google only test their fleets in major cities, where they’ve spent countless hours meticulously labeling the exact 3-D positions of lanes, curbs, and stop signs.

“The cars use these maps to know where they are and what to do in the presence of new obstacles like pedestrians and other cars,” says Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). “The need for dense 3-D maps limits the places where self-driving cars can operate.”

Indeed, if you live along the millions of miles of U.S. roads that are unpaved, unlit, or unreliably marked, you’re out of luck. Such streets are often much more complicated to map, and get a lot less traffic, so companies aren’t incentivized to develop 3-D maps for them anytime soon. From California’s Mojave Desert to Vermont’s White Mountains, there are huge swaths of America that self-driving cars simply aren’t ready for.

One way around this is to create systems advanced enough to navigate without these maps. In an important first step, Rus and colleagues at CSAIL have developed MapLite, a framework that allows self-driving cars to drive on roads they’ve never been on before without 3-D maps.

MapLite combines simple GPS data that you’d find on Google Maps with a series of sensors that observe the road conditions. In tandem, these two elements allowed the team to autonomously drive on multiple unpaved country roads in Devens, Massachusetts, and reliably detect the road more than 100 feet in advance. (As part of a collaboration with the Toyota Research Institute, researchers used a Toyota Prius that they outfitted with a range of LIDAR and IMU sensors.)

“The reason this kind of ‘map-less’ approach hasn’t really been done before is because it is generally much harder to reach the same accuracy and reliability as with detailed maps,” says CSAIL graduate student Teddy Ort, who was a lead author on a related paper about the system. “A system like this that can navigate just with on-board sensors shows the potential of self-driving cars being able to actually handle roads beyond the small number that tech companies have mapped.”

The paper, which will be presented in May at the International Conference on Robotics and Automation (ICRA) in Brisbane, Australia, was co-written by Ort, Rus, and PhD graduate Liam Paull, who is now an assistant professor at the University of Montreal.

For all the progress that has been made with self-driving cars, their navigation skills still pale in comparison to humans’. Consider how you yourself get around: If you’re trying to get to a specific location, you probably plug an address into your phone and then consult it occasionally along the way, like when you approach intersections or highway exits.

However, if you were to move through the world like most self-driving cars, you’d essentially be staring at your phone the whole time you’re walking. Existing systems still rely heavily on maps, only using sensors and vision algorithms to avoid dynamic objects like pedestrians and other cars.

In contrast, MapLite uses sensors for all aspects of navigation, relying on GPS data only to obtain a rough estimate of the car’s location. The system first sets both a final destination and what researchers call a “local navigation goal,” which has to be within view of the car. Its perception sensors then generate a path to get to that point, using LIDAR to estimate the location of the road’s edges. MapLite can do this without physical road markings by making basic assumptions about how the road will be relatively more flat than the surrounding areas.

“Our minimalist approach to mapping enables autonomous driving on country roads using local appearance and semantic features such as the presence of a parking spot or a side road,” says Rus.

The team developed a system of models that are “parameterized,” which means that they describe multiple situations that are somewhat similar. For example, one model might be broad enough to determine what to do at intersections, or what to do on a specific type of road.

MapLite differs from other map-less driving approaches that rely more on machine learning by training on data from one set of roads and then being tested on other ones.

“At the end of the day we want to be able to ask the car questions like ‘how many roads are merging at this intersection?’” says Ort. “By using modeling techniques, if the system doesn’t work or is involved in an accident, we can better understand why.”

MapLite still has some limitations. For example, it isn’t yet reliable enough for mountain roads, since it doesn’t account for dramatic changes in elevation. As a next step, the team hopes to expand the variety of roads that the vehicle can handle. Ultimately they aspire to have their system reach comparable levels of performance and reliability as mapped systems but with a much wider range.

“I imagine that the self-driving cars of the future will always make some use of 3-D maps in urban areas,” says Ort. “But when called upon to take a trip off the beaten path, these vehicles will need to be as good as humans at driving on unfamiliar roads they have never seen before. We hope our work is a step in that direction.”

This project was supported, in part, by the National Science Foundation and the Toyota Research Initiative.

Artificial intelligence in action

Aude Oliva (right), a principal research scientist at the Computer Science and Artificial Intelligence Laboratory and Dan Gutfreund (left), a principal investigator at the MIT–IBM Watson AI Laboratory and a staff member at IBM Research, are the principal investigators for the Moments in Time Dataset, one of the projects related to AI algorithms funded by the MIT–IBM Watson AI Laboratory.
Photo: John Mottern/Feature Photo Service for IBM

By Meg Murphy
A person watching videos that show things opening — a door, a book, curtains, a blooming flower, a yawning dog — easily understands the same type of action is depicted in each clip.

“Computer models fail miserably to identify these things. How do humans do it so effortlessly?” asks Dan Gutfreund, a principal investigator at the MIT-IBM Watson AI Laboratory and a staff member at IBM Research. “We process information as it happens in space and time. How can we teach computer models to do that?”

Such are the big questions behind one of the new projects underway at the MIT-IBM Watson AI Laboratory, a collaboration for research on the frontiers of artificial intelligence. Launched last fall, the lab connects MIT and IBM researchers together to work on AI algorithms, the application of AI to industries, the physics of AI, and ways to use AI to advance shared prosperity.

The Moments in Time dataset is one of the projects related to AI algorithms that is funded by the lab. It pairs Gutfreund with Aude Oliva, a principal research scientist at the MIT Computer Science and Artificial Intelligence Laboratory, as the project’s principal investigators. Moments in Time is built on a collection of 1 million annotated videos of dynamic events unfolding within three seconds. Gutfreund and Oliva, who is also the MIT executive director at the MIT-IBM Watson AI Lab, are using these clips to address one of the next big steps for AI: teaching machines to recognize actions.

Learning from dynamic scenes

The goal is to provide deep-learning algorithms with large coverage of an ecosystem of visual and auditory moments that may enable models to learn information that isn’t necessarily taught in a supervised manner and to generalize to novel situations and tasks, say the researchers.

“As we grow up, we look around, we see people and objects moving, we hear sounds that people and object make. We have a lot of visual and auditory experiences. An AI system needs to learn the same way and be fed with videos and dynamic information,” Oliva says.

For every action category in the dataset, such as cooking, running, or opening, there are more than 2,000 videos. The short clips enable computer models to better learn the diversity of meaning around specific actions and events.

“This dataset can serve as a new challenge to develop AI models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis,” Oliva adds, describing the factors involved. Events can include people, objects, animals, and nature. They may be symmetrical in time — for example, opening means closing in reverse order. And they can be transient or sustained.

Oliva and Gutfreund, along with additional researchers from MIT and IBM, met weekly for more than a year to tackle technical issues, such as how to choose the action categories for annotations, where to find the videos, and how to put together a wide array so the AI system learns without bias. The team also developed machine-learning models, which were then used to scale the data collection. “We aligned very well because we have the same enthusiasm and the same goal,” says Oliva.

Augmenting human intelligence

One key goal at the lab is the development of AI systems that move beyond specialized tasks to tackle more complex problems and benefit from robust and continuous learning. “We are seeking new algorithms that not only leverage big data when available, but also learn from limited data to augment human intelligence,” says Sophie V. Vandebroek, chief operating officer of IBM Research, about the collaboration.

In addition to pairing the unique technical and scientific strengths of each organization, IBM is also bringing MIT researchers an influx of resources, signaled by its $240 million investment in AI efforts over the next 10 years, dedicated to the MIT-IBM Watson AI Lab. And the alignment of MIT-IBM interest in AI is proving beneficial, according to Oliva.

“IBM came to MIT with an interest in developing new ideas for an artificial intelligence system based on vision. I proposed a project where we build data sets to feed the model about the world. It had not been done before at this level. It was a novel undertaking. Now we have reached the milestone of 1 million videos for visual AI training, and people can go to our website, download the dataset and our deep-learning computer models, which have been taught to recognize actions.”

Qualitative results so far have shown models can recognize moments well when the action is well-framed and close up, but they misfire when the category is fine-grained or there is background clutter, among other things. Oliva says that MIT and IBM researchers have submitted an article describing the performance of neural network models trained on the dataset, which itself was deepened by shared viewpoints. “IBM researchers gave us ideas to add action categories to have more richness in areas like health care and sports. They broadened our view. They gave us ideas about how AI can make an impact from the perspective of business and the needs of the world,” she says.

This first version of the Moments in Time dataset is one of the largest human-annotated video datasets capturing visual and audible short events, all of which are tagged with an action or activity label among 339 different classes that include a wide range of common verbs. The researchers intend to produce more datasets with a variety of levels of abstraction to serve as stepping stones toward the development of learning algorithms that can build analogies between things, imagine and synthesize novel events, and interpret scenarios.

In other words, they are just getting started, says Gutfreund. “We expect the Moments in Time dataset to enable models to richly understand actions and dynamics in videos.”

Cheetah III robot preps for a role as a first responder

Associate professor of mechanical engineering Sangbae Kim and his team at the Biomimetic Robotics Lab developed the quadruped robot, the MIT Cheetah.
Photo: David Sella

By Eric Brown

If you were to ask someone to name a new technology that emerged from MIT in the 21st century, there’s a good chance they would name the robotic cheetah. Developed by the MIT Department of Mechanical Engineering’s Biomimetic Robotics Lab under the direction of Associate Professor Sangbae Kim, the quadruped MIT Cheetah has made headlines for its dynamic legged gait, speed, jumping ability, and biomimetic design.

The dog-sized Cheetah II can run on four articulated legs at up to 6.4 meters per second, make mild running turns, and leap to a height of 60 centimeters. The robot can also autonomously determine how to avoid or jump over obstacles.

Kim is now developing a third-generation robot, the Cheetah III. Instead of improving the Cheetah’s speed and jumping capabilities, Kim is converting the Cheetah into a commercially viable robot with enhancements such as a greater payload capability, wider range of motion, and a dexterous gripping function. The Cheetah III will initially act as a spectral inspection robot in hazardous environments such as a compromised nuclear plant or chemical factory. It will then evolve to serve other emergency response needs.

“The Cheetah II was focused on high speed locomotion and agile jumping, but was not designed to perform other tasks,” says Kim. “With the Cheetah III, we put a lot of practical requirements on the design so it can be an all-around player. It can do high-speed motion and powerful actions, but it can also be very precise.”

The Biomimetic Robotics Lab is also finishing up a smaller, stripped down version of the Cheetah, called the Mini Cheetah, designed for robotics research and education. Other projects include a teleoperated humanoid robot called the Hermes that provides haptic feedback to human operators. There’s also an early stage investigation into applying Cheetah-like actuator technology to address mobility challenges among the disabled and elderly.

Conquering mobility on the land

“With the Cheetah project, I was initially motivated by copying land animals, but I also realized there was a gap in ground mobility,” says Kim. “We have conquered air and water transportation, but we haven’t conquered ground mobility because our technologies still rely on artificially paved roads or rails. None of our transportation technologies can reliably travel over natural ground or even man-made environments with stairs and curbs. Dynamic legged robots can help us conquer mobility on the ground.”

One challenge with legged systems is that they “need high torque actuators,” says Kim. “A human hip joint can generate more torque than a sports car, but achieving such condensed high torque actuation in robots is a big challenge.”

Robots tend to achieve high torque at the expense of speed and flexibility, says Kim. Factory robots use high torque actuators but they are rigid and cannot absorb energy upon the impact that results from climbing steps. Hydraulically powered, dynamic legged robots, such as the larger, higher-payload, quadruped Big Dog from Boston Dynamics, can achieve very high force and power, but at the expense of efficiency. “Efficiency is a serious issue with hydraulics, especially when you move fast,” he adds.

A chief goal of the Cheetah project has been to create actuators that can generate high torque in designs that imitate animal muscles while also achieving efficiency. To accomplish this, Kim opted for electric rather than hydraulic actuators. “Our high torque electric motors have exceeded the efficiency of animals with biological muscles, and are much more efficient, cheaper, and faster than hydraulic robots,” he says.

Cheetah III: More than a speedster

Unlike the earlier versions, the Cheetah III design was motivated more by potential applications than pure research. Kim and his team studied the requirements for an emergency response robot and worked backward.

“We believe the Cheetah III will be able to navigate in a power plant with radiation in two or three years,” says Kim. “In five to 10 years it should be able to do more physical work like disassembling a power plant by cutting pieces and bringing them out. In 15 to 20 years, it should be able to enter a building fire and possibly save a life.”

In situations such as the Fukushima nuclear disaster, robots or drones are the only safe choice for reconnaissance. Drones have some advantages over robots, but they cannot apply large forces necessary for tasks such as opening doors, and there are many disaster situations in which fallen debris prohibits drone flight.

By comparison, the Cheetah III can apply human-level forces to the environment for hours at a time. It can often climb or jump over debris, or even move it out of the way. Compared to a drone, it’s also easier for a robot to closely inspect instrumentation, flip switches, and push buttons, says Kim. “The Cheetah III can measure temperatures or chemical compounds, or close and open valves.”

Advantages over tracked robots include the ability to maneuver over debris and climb stairs. “Stairs are some of the biggest obstacles for robots,” says Kim. “We think legged robots are better in man-made environments, especially in disaster situations where there are even more obstacles.”

The Cheetah III was slowed down a bit compared to the Cheetah II, but also given greater strength and flexibility. “We increased the torque so it can open the heavy doors found in power plants,” says Kim. “We increased the range of motion to 12 degrees of freedom by using 12 electric motors that can articulate the body and the limbs.”

This is still far short of the flexibility of animals, which have over 600 muscles. Yet, the Cheetah III can compensate somewhat with other techniques. “We maximize each joint’s work space to achieve a reasonable amount of reachability,” says Kim.

The design can even use the legs for manipulation. “By utilizing the flexibility of the limbs, the Cheetah III can open the door with one leg,” says Kim. “It can stand on three legs and equip the fourth limb with a customized swappable hand to open the door or close a valve.”

The Cheetah III has an improved payload capability to carry heavier sensors and cameras, and possibly even to drop off supplies to disabled victims. However, it’s a long way from being able to rescue them. The Cheetah III is still limited to a 20-kilogram payload, and can travel untethered for four to five hours with a minimal payload.

“Eventually, we hope to develop a machine that can rescue a person,” says Kim. “We’re not sure if the robot would carry the victim or bring a carrying device,” he says. “Our current design can at least see if there are any victims or if there are any more potential dangerous events.”

Experimenting with human-robot interaction

The semiautonomous Cheetah III can make ambulatory and navigation decisions on its own. However, for disaster work, it will primarily operate by remote control.

“Fully autonomous inspection, especially in disaster response, would be very hard,” says Kim. Among other issues, autonomous decision making often takes time, and can involve trial and error, which could delay the response.

“People will control the Cheetah III at a high level, offering assistance, but not handling every detail,” says Kim. “People could tell it to go to a specific location at the map, find this place, and open that door. When it comes to hand action or manipulation, the human will take over more control and tell the robot what tool to use.”

Humans may also be able to assist with more instinctive controls. For example, if the Cheetah uses one of its legs as an arm and then applies force, it’s hard to maintain balance. Kim is now investigating whether human operators can use “balanced feedback” to keep the Cheetah from falling over while applying full force.

“Even standing on two or three legs, it would still be able to perform high force actions that require complex balancing,” says Kim. “The human operator can feel the balance, and help the robot shift its momentum to generate more force to open or hammer a door.”

The Biomimetic Robotics Lab is exploring balanced feedback with another robot project called Hermes (Highly Efficient Robotic Mechanisms and Electromechanical System). Like the Cheetah III, it’s a fully articulated, dynamic legged robot designed for disaster response. Yet, the Hermes is bipedal, and completely teleoperated by a human who wears a telepresence helmet and a full body suit. Like the Hermes, the suit is rigged with sensors and haptic feedback devices.

“The operator can sense the balance situation and react by using body weight or directly implementing more forces,” says Kim.

The latency required for such intimate real-time feedback is difficult to achieve with Wi-Fi, even when it’s not blocked by walls, distance, or wireless interference. “In most disaster situations, you would need some sort of wired communication,” says Kim. “Eventually, I believe we’ll use reinforced optical fibers.”

Improving mobility for the elderly

Looking beyond disaster response, Kim envisions an important role for agile, dynamic legged robots in health care: improving mobility for the fast-growing elderly population. Numerous robotics projects are targeting the elderly market with chatty social robots. Kim is imagining something more fundamental.

“We still don’t have a technology that can help impaired or elderly people seamlessly move from the bed to the wheelchair to the car and back again,” says Kim. “A lot of elderly people have problems getting out of bed and climbing stairs. Some elderly with knee joint problems, for example, are still pretty mobile on flat ground, but can’t climb down the stairs unassisted. That’s a very small fraction of the day when they need help. So we’re looking for something that’s lightweight and easy to use for short-time help.”

Kim is currently working on “creating a technology that could make the actuator safe,” he says. “The electric actuators we use in the Cheetah are already safer than other machines because they can easily absorb energy. Most robots are stiff, which would cause a lot of impact forces. Our machines give a little.”

By combining such safe actuator technology with some of the Hermes technology, Kim hopes to develop a robot that can help elderly people in the future. “Robots can not only address the expected labor shortages for elder care, but also the need to maintain privacy and dignity,” he says.

The autonomous “selfie drone”

Skydio, a San Francisco-based startup founded by three MIT alumni, is commercializing an autonomous video-capturing drone — dubbed by some as the “selfie drone” — that tracks and films a subject, while freely navigating any environment.
Courtesy of Skydio

By Rob Matheson

If you’re a rock climber, hiker, runner, dancer, or anyone who likes recording themselves while in motion, a personal drone companion can now do all the filming for you — completely autonomously.

Skydio, a San Francisco-based startup founded by three MIT alumni, is commercializing an autonomous video-capturing drone — dubbed by some as the “selfie drone” — that tracks and films a subject, while freely navigating any environment.

Called R1, the drone is equipped with 13 cameras that capture omnidirectional video. It launches and lands through an app — or by itself. On the app, the R1 can also be preset to certain filming and flying conditions or be controlled manually.

The concept for the R1 started taking shape almost a decade ago at MIT, where the co-founders — Adam Bry SM ’12, Abraham Bacharach PhD ’12, and Matt Donahoe SM ’11 — first met and worked on advanced, prize-winning autonomous drones. Skydio launched in 2014 and is releasing the R1 to consumers this week.

“Our goal with our first product is to deliver on the promise of an autonomous flying camera that understands where you are, understands the scene around it, and can move itself to capture amazing video you wouldn’t otherwise be able to get,” says Bry, co-founder and CEO of Skydio.

Deep understanding

Existing drones, Bry says, generally require a human pilot. Some offer pilot-assist features that aid the human controller. But that’s the equivalent of having a car with adaptive cruise control — which automatically adjusts vehicle speed to maintain a safe distance from the cars ahead, Bry says. Skydio, on the other hand, “is like a driverless car with level-four autonomy,” he says, referring to the second-highest level of vehicle automation.

R1’s system integrates advanced algorithm components spanning perception, planning, and control, which give it unique intelligence “that’s analogous to how a person would navigate an environment,” Bry says.

On the perception side, the system uses computer vision to determine the location of objects. Using a deep neural network, it compiles information on each object and identifies each individual by, say, clothing and size. “For each person it sees, it builds up a unique visual identification to tell people apart and stays focused on the right person,” Bry says.

That data feeds into a motion-planning system, which pinpoints a subject’s location and predicts their next move. It also recognizes maneuvering limits in one area to optimize filming. “All information is constantly traded off and balanced … to capture a smooth video,” Bry says.

Finally, the control system takes all information to execute the drone’s plan in real time. “No other system has this depth of understanding,” Bry says. Others may have one or two components, “but none has a full, end-to-end, autonomous [software] stack designed and integrated together.”

For users, the end result, Bry says, is a drone that’s as simple to use as a camera app: “If you’re comfortable taking pictures with your iPhone, you should be comfortable using R1 to capture video.”

A user places the drone on the ground or in their hand, and swipes up on the Skydio app. (A manual control option is also available.) The R1 lifts off, identifies the user, and begins recording and tracking. From there, it operates completely autonomously, staying anywhere from 10 feet to 30 feet away from a subject, autonomously, or 300 feet away, manually, depending on Wi-Fi availability.

When batteries run low, the app alerts the user. Should the user not respond, the drone will find a flat place to land itself. After the flight — which can last about 16 minutes, depending on speed and use — users can store captured video or upload it to social media.

Through the app, users can also switch between several cinematic modes. For instance, with “stadium mode,” for field sports, the drone stays above and moves around the action, following selected subjects. Users can also direct the drone where to fly (in front, to the side, or constantly orbiting). “These are areas we’re now working on to add more capabilities,” Bry says.

The lightweight drone can fit into an average backpack and runs about $2,500.

Skydio takes wing

Bry came to MIT in 2009, “when it was first possible to take a [hobby] airplane and put super powerful computers and sensors on it,” he says.

He joined the Robust Robotics Group, led by Nick Roy, an expert in drone autonomy. There, he met Bacharach, now Skydio’s chief technology officer, who that year was on a team that won the Association for Unmanned Vehicles International contest with an autonomous minihelicopter that navigated the aftermath of a mock nuclear meltdown. Donahoe was a friend and graduate student at the MIT Media Lab at the time.

In 2012, Bry and Bacharach helped develop autonomous-control algorithms that could calculate a plane’s trajectory and determine its “state” — its location, physical orientation, velocity, and acceleration. In a series of test flights, a drone running their algorithms maneuvered around pillars in the parking garage under MIT’s Stata Center and through the Johnson Athletic Center.

These experiences were the seeds of Skydio, Bry says: “The foundation of the [Skydio] technology, and how all the technology works and the recipe for how all of it comes together, all started at MIT.”

After graduation, in 2012, Bry and Bacharach took jobs in industry, landing at Google’s Project Wing delivery-drone initiative — a couple years before Roy was tapped by Google to helm the project. Seeing a need for autonomy in drones, in 2014, Bry, Bacharach, and Donahoe founded Skydio to fulfill a vision that “drones [can have] enormous potential across industries and applications,” Bry says.

For the first year, the three co-founders worked out of Bacharach’s dad’s basement, getting “free rent in exchange for helping out with yard work,” Bry says. Working with off-the-shelf hardware, the team built a “pretty ugly” prototype. “We started with a [quadcopter] frame and put a media center computer on it and a USB camera. Duct tape was holding everything together,” Bry says.

But that prototype landed the startup a seed round of $3 million in 2015. Additional funding rounds over the next few years — more than $70 million in total — helped the startup hire engineers from MIT, Google, Apple, Tesla, and other top tech firms.

Over the years, the startup refined the drone and tested it in countries around the world — experimenting with high and low altitudes, heavy snow, fast winds, and extreme high and low temperatures. “We’ve really tried to bang on the system pretty hard to validate it,” Bry says.

Athletes, artists, inspections

Early buyers of Skydio’s first product are primarily athletes and outdoor enthusiasts who record races, training, or performances. For instance, Skydio has worked with Mikel Thomas, Olympic hurdler from Trinidad and Tobago, who used the R1 to analyze his form.

Artists, however, are also interested, Bry adds: “There’s a creative element to it. We’ve had people make music videos. It was themselves in a driveway or forest. They dance and move around and the camera will respond to them and create cool content that would otherwise be impossible to get.”

In the future, Skydio hopes to find other applications, such as inspecting commercial real estate, power lines, and energy infrastructure for damage. “People have talked about using drones for these things, but they have to be manually flown and it’s not scalable or reliable,” Bry says. “We’re going in the direction of sleek, birdlike devices that are quiet, reliable, and intelligent, and that people are comfortable using on a daily basis.”

ML 2.0: Machine learning for many

“As the momentum builds, developers will be able to set up a ML [machine learning] apparatus just as they set up a database,” says Max Kanter, CEO at Feature Labs. “It will be that simple.”
Courtesy of the Laboratory for Information and Decision Systems

Today, when an enterprise wants to use machine learning to solve a problem, they have to call in the cavalry. Even a simple problem requires multiple data scientists, machine learning experts, and domain experts to come together to agree on priorities and exchange data and information.

This process is often inefficient, and it takes months to get results. It also only solves the problem immediate at hand. The next time something comes up, the enterprise has to do the same thing all over again.

One group of MIT researchers wondered, “What if we tried another strategy? What if we created automation tools that enable the subject matter experts to use ML, in order to solve these problems themselves?”

For the past five years, Kalyan Veeramachaneni, a principal research scientist at MIT’s Laboratory for Information and Decision Systems, along with Max Kanter and Ben Schreck who began working with Veeramachaneni as MIT students and later co-founded machine learning startup Feature Labs, has been designing a rigorous paradigm for applied machine learning.

The team first divided the process into a discrete set of steps. For instance, one step involved searching for buried patterns with predictive power, known as “feature engineering.” Another is called “model selection,” in which the best modeling technique is chosen from the many available options. They then automated these steps, releasing open-source tools to help domain experts efficiently complete them.

In their new paper, “Machine Learning 2.0: Engineering Data Driven AI Products,” the team brings together these automation tools, turning raw data into a trustworthy, deployable model over the course of seven steps. This chain of automation makes it possible for subject matter experts — even those without data science experience — to use machine learning to solve business problems.

“Through automation, ML 2.0 frees up subject matter experts to spend more time on the steps that truly require their domain expertise, like deciding which problems to solve in the first place and evaluating how predictions impact business outcomes,” says Schreck.

Last year, Accenture joined the MIT and Feature Labs team to undertake an ambitious project — build an AI project manager by developing and deploying a machine learning model that could predict critical problems ahead of time and augment seasoned human project managers in the software industry.

This was an opportunity to test ML 2.0’s automation tool, Featuretools, an open-source library funded by DARPA’s Data-Driven Discovery of Models (D3M) program, on a real-world problem.

Veeramachaneni and his colleagues closely collaborated with domain experts from Accenture along every step, from figuring out the best problem to solve, to running through a robust gauntlet of testing. The first model the team built was to predict the performance of software projects against a host of delivery metrics. When testing was completed, the model was found to correctly predict more than 80 percent of project performance outcomes.

Using Featuretools involved a series of human-machine interactions. In this case, Featuretools first recommended 40,000 features to the domain experts. Next, the humans used their expertise to narrow this list down to the 100 most promising features, which they then put to work training the machine-learning algorithm.

Next, the domain experts used the software to simulate using the model, and test how well it would work as new, real-time data came in. This method also extends the “train-test-validate” protocol typical to contemporary machine-learning research, making it more applicable to real-world use. The model was then deployed making predictions for hundreds of projects on a weekly basis.

“We wanted to apply machine learning (ML) to critical problems that we face in the technology services business,” says Sanjeev Vohra, global technology officer, Accenture Technology. “More specifically, we wanted to see for ourselves if MIT’s ML 2.0 could help anticipate potential risks in software delivery. We are very happy with the outcomes, and will be sharing them broadly so others can also benefit.”

In a separate joint paper, “The AI Project Manager,” the teams walk through how they used the ML 2.0 paradigm to achieve fast and accurate predictions.

“For 20 years, the task of applying machine learning to problems has been approached as a research or feasibility project, or an opportunity to make a discovery,” says Veeramachaneni. “With these new automation tools it is now possible to create a machine learning model from raw data and put them to use — within weeks,” says Veeramachaneni.

The team intends to keep honing ML 2.0 in order to make it relevant to as many industry problems as possible. “This is the true idea behind democratizing machine learning. We want to make ML useful to a broad swath of people,” he adds.

In the next five years, we are likely to see an increase in the adoption of ML 2.0. “As the momentum builds, developers will be able to set up a ML apparatus just as they set up a database,” says Max Kanter, CEO at Feature Labs. “It will be that simple.”

Custom carpentry with help from robots

PhD student Adriana Schulz was co-lead on AutoSaw, which lets nonexperts customize different items that can then be constructed with the help of robots.
Photo: Jason Dorfman, MIT CSAIL

By Adam Conner-Simons and Rachel Gordon

Every year thousands of carpenters injure their hands and fingers doing dangerous tasks such as sawing.

In an effort to minimize injury and let carpenters focus on design and other bigger-picture tasks, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has created AutoSaw, a system that lets nonexperts customize different items that can then be constructed with the help of robots.

Users can choose from a range of carpenter-designed templates for chairs, desks, and other furniture. The team says that AutoSaw could eventually be used for projects as large as a deck or a porch.

“If you’re building a deck, you have to cut large sections of lumber to length, and that’s often done on site,” says CSAIL postdoc Jeffrey Lipton, who was a lead author on a related paper about the system. “Every time you put a hand near a blade, you’re at risk. To avoid that, we’ve largely automated the process using a chop-saw and jigsaw.”

The system also offers flexibility for designing furniture to fit space-constrained houses and apartments. For example, it could allow a user to modify a desk to squeeze into an L-shaped living room, or customize a table to fit in a microkitchen.  

“Robots have already enabled mass production, but with artificial intelligence (AI) they have the potential to enable mass customization and personalization in almost everything we produce,” says CSAIL director and co-author Daniela Rus. “AutoSaw shows this potential for easy access and customization in carpentry.”

The paper, which will be presented in May at the International Conference on Robotics and Automation (ICRA) in Brisbane, Australia, was co-written by Lipton, Rus, and PhD student Adriana Schulz. Other co-authors include MIT Professor Wojciech Matusik, PhD student Andrew Spielberg, and undergraduate Luis Trueba.

How it works

Software isn’t a foreign concept for some carpenters. “Computer Numerical Control” (CNC) can convert designs into numbers that are fed to specially programmed tools to execute. However, the machines used for CNC fabrication are usually large and cumbersome, and users are limited to the size of the existing CNC tools.

As a result, many carpenters continue to use chop-saws, jigsaws, and other hand tools that are low cost, easy to move, and simple to use. These tools, while useful for customization, still put people at a high risk of injury.

AutoSaw draws on expert knowledge for designing, and robotics for the more risky cutting tasks. Using the existing CAD system OnShape with an interface of design templates, users can customize their furniture for things like size, sturdiness, and aesthetics. Once the design is finalized, it’s sent to the robots to assist in the cutting process using the jigsaw and chop-saw.

To cut lumber the team used motion-tracking software and small mobile robots — an approach that takes up less space and is more cost-effective than large robotic arms.

Specifically, the team used a modified Roomba with a jigsaw attached to cut lumber of any shape on a plank. For the chopping, the team used two Kuka youBots to lift the beam, place it on the chop saw, and cut.

“We added soft grippers to the robots to give them more flexibility, like that of a human carpenter,” says Lipton. “This meant we could rely on the accuracy of the power tools instead of the rigid-bodied robots.”

After the robots finish with cutting, the user then assembles the new piece of furniture using step-by-step directions from the system.

Democratizing custom furniture

When testing the system, the teams’ simulations showed that they could build a chair, shed, and deck. Using the robots, the team also made a table with an accuracy comparable to that of a human, without a real hand ever getting near a blade.

“There have been many recent AI achievements in virtual environments, like playing Go and composing music,” says Hod Lipson, a professor of mechanical engineering and data science at Columbia University. “Systems that can work in unstructured physical environments, such as this carpentry system, are notoriously difficult to make. This is truly a fascinating step forward.”

While AutoSaw is still a research platform, in the future the team plans to use materials such as wood, and integrate complex tasks such as drilling and gluing.

“Our aim is to democratize furniture-customization,” says Schulz. “We’re trying to open up a realm of opportunities so users aren’t bound to what they’ve bought at Ikea. Instead, they can make what best fits their needs.”

The project was supported in part by the National Science Foundation.

Robo-picker grasps and packs

The “pick-and-place” system consists of a standard industrial robotic arm that the researchers outfitted with a custom gripper and suction cup. They developed an “object-agnostic” grasping algorithm that enables the robot to assess a bin of random objects and determine the best way to grip or suction onto an item amid the clutter, without having to know anything about the object before picking it up.
Image: Melanie Gonick/MIT
By Jennifer Chu

Unpacking groceries is a straightforward albeit tedious task: You reach into a bag, feel around for an item, and pull it out. A quick glance will tell you what the item is and where it should be stored.

Now engineers from MIT and Princeton University have developed a robotic system that may one day lend a hand with this household chore, as well as assist in other picking and sorting tasks, from organizing products in a warehouse to clearing debris from a disaster zone.

The team’s “pick-and-place” system consists of a standard industrial robotic arm that the researchers outfitted with a custom gripper and suction cup. They developed an “object-agnostic” grasping algorithm that enables the robot to assess a bin of random objects and determine the best way to grip or suction onto an item amid the clutter, without having to know anything about the object before picking it up.

Once it has successfully grasped an item, the robot lifts it out from the bin. A set of cameras then takes images of the object from various angles, and with the help of a new image-matching algorithm the robot can compare the images of the picked object with a library of other images to find the closest match. In this way, the robot identifies the object, then stows it away in a separate bin.

In general, the robot follows a “grasp-first-then-recognize” workflow, which turns out to be an effective sequence compared to other pick-and-place technologies.

“This can be applied to warehouse sorting, but also may be used to pick things from your kitchen cabinet or clear debris after an accident. There are many situations where picking technologies could have an impact,” says Alberto Rodriguez, the Walter Henry Gale Career Development Professor in Mechanical Engineering at MIT.

Rodriguez and his colleagues at MIT and Princeton will present a paper detailing their system at the IEEE International Conference on Robotics and Automation, in May. 

Building a library of successes and failures

While pick-and-place technologies may have many uses, existing systems are typically designed to function only in tightly controlled environments.

Today, most industrial picking robots are designed for one specific, repetitive task, such as gripping a car part off an assembly line, always in the same, carefully calibrated orientation. However, Rodriguez is working to design robots as more flexible, adaptable, and intelligent pickers, for unstructured settings such as retail warehouses, where a picker may consistently encounter and have to sort hundreds, if not thousands of novel objects each day, often amid dense clutter.

The team’s design is based on two general operations: picking — the act of successfully grasping an object, and perceiving — the ability to recognize and classify an object, once grasped.   

The researchers trained the robotic arm to pick novel objects out from a cluttered bin, using any one of four main grasping behaviors: suctioning onto an object, either vertically, or from the side; gripping the object vertically like the claw in an arcade game; or, for objects that lie flush against a wall, gripping vertically, then using a flexible spatula to slide between the object and the wall.

Rodriguez and his team showed the robot images of bins cluttered with objects, captured from the robot’s vantage point. They then showed the robot which objects were graspable, with which of the four main grasping behaviors, and which were not, marking each example as a success or failure. They did this for hundreds of examples, and over time, the researchers built up a library of picking successes and failures. They then incorporated this library into a “deep neural network” — a class of learning algorithms that enables the robot to match the current problem it faces with a successful outcome from the past, based on its library of successes and failures.

“We developed a system where, just by looking at a tote filled with objects, the robot knew how to predict which ones were graspable or suctionable, and which configuration of these picking behaviors was likely to be successful,” Rodriguez says. “Once it was in the gripper, the object was much easier to recognize, without all the clutter.”

From pixels to labels

The researchers developed a perception system in a similar manner, enabling the robot to recognize and classify an object once it’s been successfully grasped.

To do so, they first assembled a library of product images taken from online sources such as retailer websites. They labeled each image with the correct identification — for instance, duct tape versus masking tape — and then developed another learning algorithm to relate the pixels in a given image to the correct label for a given object.

“We’re comparing things that, for humans, may be very easy to identify as the same, but in reality, as pixels, they could look significantly different,” Rodriguez says. “We make sure that this algorithm gets it right for these training examples. Then the hope is that we’ve given it enough training examples that, when we give it a new object, it will also predict the correct label.”

Last July, the team packed up the 2-ton robot and shipped it to Japan, where, a month later, they reassembled it to participate in the Amazon Robotics Challenge, a yearly competition sponsored by the online megaretailer to encourage innovations in warehouse technology. Rodriguez’s team was one of 16 taking part in a competition to pick and stow objects from a cluttered bin.

In the end, the team’s robot had a 54 percent success rate in picking objects up using suction and a 75 percent success rate using grasping, and was able to recognize novel objects with 100 percent accuracy. The robot also stowed all 20 objects within the allotted time.

For his work, Rodriguez was recently granted an Amazon Research Award and will be working with the company to further improve pick-and-place technology — foremost, its speed and reactivity.

“Picking in unstructured environments is not reliable unless you add some level of reactiveness,” Rodriguez says. “When humans pick, we sort of do small adjustments as we are picking. Figuring out how to do this more responsive picking, I think, is one of the key technologies we’re interested in.”

The team has already taken some steps toward this goal by adding tactile sensors to the robot’s gripper and running the system through a new training regime.

“The gripper now has tactile sensors, and we’ve enabled a system where the robot spends all day continuously picking things from one place to another. It’s capturing information about when it succeeds and fails, and how it feels to pick up, or fails to pick up objects,” Rodriguez says. “Hopefully it will use that information to start bringing that reactiveness to grasping.”

This research was sponsored in part by ABB Inc., Mathworks, and Amazon.

Programming drones to fly in the face of uncertainty

Researchers trail a drone on a test flight outdoors.
Photo: Jonathan How/MIT

Companies like Amazon have big ideas for drones that can deliver packages right to your door. But even putting aside the policy issues, programming drones to fly through cluttered spaces like cities is difficult. Being able to avoid obstacles while traveling at high speeds is computationally complex, especially for small drones that are limited in how much they can carry onboard for real-time processing.

Many existing approaches rely on intricate maps that aim to tell drones exactly where they are relative to obstacles, which isn’t particularly practical in real-world settings with unpredictable objects. If their estimated location is off by even just a small margin, they can easily crash.

With that in mind, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed NanoMap, a system that allows drones to consistently fly 20 miles per hour through dense environments such as forests and warehouses.

One of NanoMap’s key insights is a surprisingly simple one: The system considers the drone’s position in the world over time to be uncertain, and actually models and accounts for that uncertainty.

“Overly confident maps won’t help you if you want drones that can operate at higher speeds in human environments,” says graduate student Pete Florence, lead author on a new related paper. “An approach that is better aware of uncertainty gets us a much higher level of reliability in terms of being able to fly in close quarters and avoid obstacles.”

Specifically, NanoMap uses a depth-sensing system to stitch together a series of measurements about the drone’s immediate surroundings. This allows it to not only make motion plans for its current field of view, but also anticipate how it should move around in the hidden fields of view that it has already seen.

“It’s kind of like saving all of the images you’ve seen of the world as a big tape in your head,” says Florence. “For the drone to plan motions, it essentially goes back into time to think individually of all the different places that it was in.”

The team’s tests demonstrate the impact of uncertainty. For example, if NanoMap wasn’t modeling uncertainty and the drone drifted just 5 percent away from where it was expected to be, the drone would crash more than once every four flights. Meanwhile, when it accounted for uncertainty, the crash rate reduced to 2 percent.

The paper was co-written by Florence and MIT Professor Russ Tedrake alongside research software engineers John Carter and Jake Ware. It was recently accepted to the IEEE International Conference on Robotics and Automation, which takes place in May in Brisbane, Australia.

For years computer scientists have worked on algorithms that allow drones to know where they are, what’s around them, and how to get from one point to another. Common approaches such as simultaneous localization and mapping (SLAM) take raw data of the world and convert them into mapped representations.

But the output of SLAM methods aren’t typically used to plan motions. That’s where researchers often use methods like “occupancy grids,” in which many measurements are incorporated into one specific representation of the 3-D world.

The problem is that such data can be both unreliable and hard to gather quickly. At high speeds, computer-vision algorithms can’t make much of their surroundings, forcing drones to rely on inexact data from the inertial measurement unit (IMU) sensor, which measures things like the drone’s acceleration and rate of rotation.

The way NanoMap handles this is that it essentially doesn’t sweat the minor details. It operates under the assumption that, to avoid an obstacle, you don’t have to take 100 different measurements and find the average to figure out its exact location in space; instead, you can simply gather enough information to know that the object is in a general area.

“The key difference to previous work is that the researchers created a map consisting of a set of images with their position uncertainty rather than just a set of images and their positions and orientation,” says Sebastian Scherer, a systems scientist at Carnegie Mellon University’s Robotics Institute. “Keeping track of the uncertainty has the advantage of allowing the use of previous images even if the robot doesn’t know exactly where it is and allows in improved planning.”

Florence describes NanoMap as the first system that enables drone flight with 3-D data that is aware of “pose uncertainty,” meaning that the drone takes into consideration that it doesn’t perfectly know its position and orientation as it moves through the world. Future iterations might also incorporate other pieces of information, such as the uncertainty in the drone’s individual depth-sensing measurements.

NanoMap is particularly effective for smaller drones moving through smaller spaces, and works well in tandem with a second system that is focused on more long-horizon planning. (The researchers tested NanoMap last year in a program tied to the Defense Advanced Research Projects Agency, or DARPA.)

The team says that the system could be used in fields ranging from search and rescue and defense to package delivery and entertainment. It can also be applied to self-driving cars and other forms of autonomous navigation.

“The researchers demonstrated impressive results avoiding obstacles and this work enables robots to quickly check for collisions,” says Scherer. “Fast flight among obstacles is a key capability that will allow better filming of action sequences, more efficient information gathering and other advances in the future.”

This work was supported in part by DARPA’s Fast Lightweight Autonomy program.

Robotic interiors

MIT Media Lab spinout Ori is developing smart robotic furniture that transforms into a bedroom, working or storage area, or large closet — or slides back against the wall — to optimize space in small apartments.
Courtesy of Ori

By Rob Matheson

Imagine living in a cramped studio apartment in a large city — but being able to summon your bed or closet through a mobile app, call forth your desk using voice command, or have everything retract at the push of a button.

MIT Media Lab spinout Ori aims to make that type of robotic living a reality. The Boston-based startup is selling smart robotic furniture that transforms into a bedroom, working or storage area, or large closet — or slides back against the wall — to optimize space in small apartments.

Based on years of Media Lab work, Ori’s system is an L-shaped unit installed on a track along a wall, so can slide back and forth. One side features a closet, a small fold-out desk, and several drawers and large cubbies. At the bottom is a pull-out bed. The other side of the unit includes a horizontal surface that can open out to form a table. The vertical surface above that features a large nook where a television can be placed, and additional drawers and cubbies. The third side, opposite the wall, contains still more shelving, and pegs to hang coats and other items.

Users control the unit through a control hub plugged into a wall, or through Ori’s mobile app or a smart home system, such as Amazon’s Echo.

Essentially, a small studio can at any time become a bedroom, lounge, walk-in closet, or living and working area, says Ori founder and CEO Hasier Larrea SM ’15. “We use robotics to … make small spaces act like they were two or three times bigger,” he says. “Around 200 square feet seems too small [total area] to live in, but a 200-square-foot bedroom or living room doesn’t seem so small.” Larrea was named to Forbes’ 2017 30 Under 30 list for his work with Ori.

The first commercial line of the systems, which goes for about $10,000, is now being sold to real estate developers in Boston and other major cities across the U.S. and Canada, for newly built or available apartments. In Boston, partners include Skanska, which has apartments in the Seaport; Samuels and Associates, with buildings around Harvard Square; and Hines for its Marina Bay units. Someday, Larrea says, the system could be bought directly by consumers.

Once the system catches on and the technology evolves, Larrea imagines future apartments could be furnished entirely with robotic furniture from Ori and other companies.

“These technologies can evolve for kitchens, bathrooms, and general partition walls. At some point, a two-bedroom apartment could turn into a large studio, transform into three rooms for your startup, or go into ‘party mode,’ where it all opens up again,” Larrea says. “Spaces will adapt to us, instead of us adapting to spaces, which is what we’ve been doing for so many years.”

Architectural robotics

In 2011, Larrea joined the Media Lab’s City Science research group, directed by Principal Research Scientist Kent Larson, which included his three co-founders: Chad Bean ’14, Carlos Rubio ’14, and Ivan Fernandez de Casadevante, who was a visiting researcher.

The group’s primary focus was tackling challenges of mass urbanization, as cities are becoming increasingly popular living destinations. “Data tells us that, in places like China and India, 600 million people will move from towns to cities in the next 15 years,” Larrea says. “Not only is the way we move through cities and feed people going to need to evolve, but so will the way people live and work in spaces.”

A second emerging phenomenon was the Internet of Things, which saw an influx of smart gadgets, including household items and furniture, designed to connect to the Internet. “Those two megatrends were bound to converge,” Larrea says.

The group started a project called CityHome, creating what it called “architectural robotics,” which integrated robotics, architecture, computer science, and engineering to design smart, modular furniture. The group prototyped a moveable wall that could be controlled via gesture control — which looked similar to today’s Ori system — and constructed a mock 200-square-foot studio apartment on the fifth floor of the Media Lab to test it out. Within the group, the unit was called “furniture with superpowers,” Larrea says, as it made small spaces seem bigger.

After they had constructed their working prototype, in early 2015 the researchers wanted to scale up. Inspiration came from the Media Lab-LEGO MindStorms collaboration from the late 1990s, where researchers created kits that incorporated sensors and motors inside traditional LEGO bricks so kids could build robots and researchers could prototype.

Drawing from that concept, the group built standardized components that could be assembled into a larger piece of modular furniture — what Ori now calls the robotic “muscle,” “skeleton,” “brains,” and the furniture “skins.” Specifically, the muscle consists of the track, motors, and electronics that actuate the system. The skeleton is the frame and the wheels that give the unit structure and movement. The brain is the microcomputer that controls all the safety features and connects the device to the Internet. And the skin is the various pieces of furniture that can be integrated, using the same robotic architecture.

Today, units fit full- or queen-size mattresses and come in different colors. In the future, however, any type of furniture could be integrated, creating units of various shapes, sizes, uses, and price. “The robotics will keep evolving but stay standardized … so, by adding different skins, you can really create anything you can imagine,” Larrea says.

Kickstarting Ori

Going through the Martin Trust Center for MIT Entrepreneurship’s summer accelerator delta V (then called the Global Founders Skills Accelerator) in 2015 “kickstarted” the startup, Larrea says. One lesson that particularly stood out: the importance of conducting market research. “At MIT, sometimes we assume, because we have such a cool technology, marketing it will be easy. … But we forget to talk to people,” he says.

In the early days, the co-founders put tech development aside to speak with owners of studios, offices, and hotels, as well as tenants. In doing so, they learned studio renters in particular had three major complaints: Couples wanted separate living areas, and everyone wanted walk-in closets and space to host parties. The startup then focused on developing a furniture unit that addressed those issues.

After earning one of its first investors in the Media Lab’s E14 Fund in fall 2015, the startup installed an early version of its system in several Boston apartments for renters to test and provide feedback. Soon after, the system hit apartments in 10 major cities across the U.S. and Canada, including San Francisco, Vancouver, Chicago, Miami, and New York. Over the past two years, the startup has used feedback from those pilots to refine the system into today’s commercial model.

Ori will ship an initial production run of 500 units for apartments over the next few months. Soon, Larrea says, the startup also aims to penetrate adjacent markets, such as hotels, dormitories, and offices. “The idea is to prove this isn’t a one-trick pony,” Larrea says. “It’s part of a more comprehensive strategy to unlock the potential of space.”

3Q: Daron Acemoglu on technology and the future of work

K. Daron Acemoglu, the Elizabeth and James Killian Professor of Economics at MIT, is a leading thinker on the labor market implications of artificial intelligence, robotics, automation, and new technologies.
Photo: Jared Charney

By Meg Murphy
K. Daron Acemoglu, the Elizabeth and James Killian Professor of Economics at MIT, is a leading thinker on the labor market implications of artificial intelligence, robotics, automation, and new technologies. His innovative work challenges the way people think about these technologies intersect with the world of work. In 2005, he won the John Bates Clark Medal, an honor shared by a number of Nobel Prize recipients and luminaries in the field of economics.

Acemoglu holds a bachelor’s degree in economics from University of York. His master’s degree in mathematical economics and econometrics and doctorate in economics are from the London School of Economics. With political scientist James Robinson, Acemoglu co-authored the much discussed book “Why Nations Fail” (Crown Business, 2012) and “Economic Origins of Dictatorship and Democracy” (Cambridge University Press, 2006). He also wrote the book, “Introduction to Modern Economic Growth” (Princeton University Press, 2008). Acemoglu recently answered a few questions about technology and work.

Q: How do we begin to understand the rise of artificial intelligence and its future impact on society?

A: We need to look to the past in the face of modern innovations in machine learning, robotics, artificial intelligence, big data, and beyond. The process of machines replacing labor in the production process is not a new one. It’s been going on pretty much continuously since the Industrial Revolution. Spinning and weaving machines took jobs away from spinners and weavers. One innovation would follow another, and people would be thrown out of work by a machine performing the job in a cheaper way.

But at the end of the day, the Industrial Revolution and its aftermath created much better opportunities for people. For much of the 20th century in the U.S., workers’ wages and employment kept growing. New occupations and new tasks and new jobs were generated within the framework of new technological knowledge. A huge number of occupations in the American economy today did not exist 50 years ago — radiologists, management consultants, software developers, and so on. Go back a century and most of the white-collar jobs today did not exist.

Q:  Do you think public fears about the future of work are just?

A: The way we live continuously changes in significant ways — how we learn, how we acquire food, what we emphasize, our social organizations.

Our adjustments to technology — especially transformative technologies — are not a walk in the park. It is not going to be easy and seamless and just sort itself out. A lot of historical evidence shows the process is a painful one. The mechanization of agriculture is one of the greatest achievement of the American economy but it was hugely disruptive for millions of people who suffered joblessness.

At the same time, we are capable technologically and socially of creating many new jobs that will take people to new horizons in terms of productivity and freedom from the hardest types of manual labor. There are great opportunities with artificial intelligence but whether or not we exploit them is a different question. I think you should never be too optimistic but neither should you be too pessimistic.

Q: How do you suggest people prepare for the future job market?

A: We are very much in the midst of understanding what sort of process we are going through. We don’t even necessarily know what skills are needed for the jobs of the future.

Imagine one scenario. Artificial intelligence removes the need for seasoned accountants to fulfill numeracy-related tasks. But we need tax professionals, for instance, to inform clients about their choices and options in some sort of emphatic human way. They will have to become the interface between the machines and the customers. The jobs of the future, in this instance and many others, would require communications, flexibility, and social skills.

However, I don’t know if my hypothesis is true because we haven’t tested it. We haven’t lived through it. I see the biggest void in our knowledge. People at institutions like MIT must learn more about what’s is going on so that we are better prepared to understand the future.

Page 9 of 12
1 7 8 9 10 11 12