Human facial expressions could be one of the keys in building trust between Soldiers and autonomous agents.
Over the past few years, robotics researchers have designed tiny and untethered swimming robots, also known as microswimmers, with increasingly advanced sensing and locomotion capabilities. These microrobots could prove very useful in medical settings, particularly for the implementation of minimally invasive targeted therapies in parts of the body that are difficult to reach, such as the central nervous system or vascular system.
Researchers at Charles University, Švanda Theater and the Academy of Performing Arts in Prague are currently working on an intriguing research project that merges artificial intelligence and robotics with theater. Their project's main objective is to use artificial intelligence to create an innovative theatrical performance, which is expected to premiere in January 2021.
A research team from Japan has developed a single-camera machine vision algorithm, making it possible for lightweight hovering indoor robots to guide themselves by identifying and interpreting reference points on a tiled floor. The technology opens the door to a new breed of functional, low-cost drones with potentially wide-ranging uses.
A Ford plant in Michigan has gone to the dogs.
Amazon has put delivery robots to work during the pandemic and is now expanding its fleet to cities in the South.
Need a robot with a soft touch? A team of Michigan State University engineers has designed and developed a novel humanoid hand that may be able to help.
Vector-borne diseases are illnesses that can be transmitted to humans by blood-feeding insects, such as mosquitoes, ticks and fleas. Mosquitoes are known to contribute to the spread of a number of vector-borne diseases, including malaria, dengue, yellow fever and Zika.
Engineers at Caltech have designed a new data-driven method to control the movement of multiple robots through cluttered, unmapped spaces, so they do not run into one another.
Wouldn't we all appreciate a little help around the house, especially if that help came in the form of a smart, adaptable, uncomplaining robot? Sure, there are the one-trick Roombas of the appliance world. But MIT engineers are envisioning robots more like home helpers, able to follow high-level, Alexa-type commands, such as "Go to the kitchen and fetch me a coffee cup."
In the movie "Ant-Man," the title character can shrink in size and travel by soaring on the back of an insect. Now researchers at the University of Washington have developed a tiny wireless steerable camera that can also ride aboard an insect, giving everyone a chance to see an Ant-Man view of the world.
The former head of Google's robotics division has unveiled a new robot named Stretch that he hopes will prove to be an economical and handy assistant around the home.
Picking up a can of soft drink may be a simple task for humans, but this is a complex task for robots—it has to locate the object, deduce its shape, determine the right amount of strength to use, and grasp the object without letting it slip. Most of today's robots operate solely based on visual processing, which limits their capabilities. In order to perform more complex tasks, robots have to be equipped with an exceptional sense of touch and the ability to process sensory information quickly and intelligently.
Researchers at Eindhoven University of Technology developed a tiny plastic robot, made of responsive polymers, which moves under the influence of light and magnetism. In the future this 'wireless aquatic polyp' should be able to attract and capture contaminant particles from the surrounding liquid or pick up and transport cells for analysis in diagnostic devices. The researchers published their results in the journal PNAS.
Ground robots will be trained to receive demonstration commands—instead of verbal commands—to interpret, follow, recall and apply in similar contexts as part of a new Army research project starting this month with the University of Texas at Austin.