If you've ever watched Planet Earth, you know the ocean is a wild place to live. The water is teeming with different ecosystems and organisms varying in complexity from an erudite octopus to a sea star. Unexpectedly, it is the sea star, a simple organism characterized by a decentralized nervous system, that offers insights into advanced adaptation to hydrodynamic forces—the forces created by water pressure and flow.
Nami Hamaura says she feels less lonely working from home thanks to her singing companion Charlie, one of a new generation of cute and clever Japanese robots whose sales are booming in the pandemic.
The European research project BADGER, coordinated by the Universidad Carlos III de Madrid (UC3M), has presented a prototype of an autonomous underground robot with intelligent navigation for urban environments.
Two students who graduated from VR Siddartha Engineering College in Kanuru, India, have created a virtual telepresence robot that allows users to see what is happening in a remote location as if they were actually there. Their project, supervised by Professor V.N. Prudhvi Raj, provides a valuable example of how robots can be used to capture video data in real time and monitor places that are momentarily or permanently inaccessible to humans.
'Moralities of Intelligent Machines' is a project that investigates people's attitudes towards moral choices made by artificial intelligence. In the latest study completed under the project, study participants read short narratives where either a robot, a somewhat humanoid robot known as iRobot, a robot with a strong humanoid appearance called iClooney or a human being encounters a moral problem along the lines of the trolley dilemma, making a specific decision. The participants were also shown images of these agents, after which they assessed the morality of their decisions. The study was funded by the Jane and Aatos Erkko Foundation and the Academy of Finland.
Cleaning robot Franzi makes sure floors are spotless at the Munich hospital where she works, and has taken on a new role during the pandemic: cheering up patients and staff.
Robotic clothing that is entirely soft and could help people to move more easily is a step closer to reality thanks to the development of a new flexible and lightweight power system for soft robotics.
Engineers at the University of California San Diego have created a four-legged soft robot that doesn't need any electronics to work. The robot only needs a constant source of pressurized air for all its functions, including its controls and locomotion systems.
A new study shows that the combined use of fixed acoustic reception stations and underwater robots for the study of deep-sea species allows for a better understanding of their ecology. These technological advances could improve the recovery of deep-sea demersal populations.
Soft robots are better suited to certain situations than traditional robots. When interacting with an environment, humans or other living things, the inherent softness built into the structure of a robot made of rubber, for example, is safer than metal. Soft robots are also better at interacting with an unstable or uncertain environment—if a robot contacts an unpredicted object, it can simply deform to the object rather than crashing.
The Army of the future will involve humans and autonomous machines working together to accomplish the mission. According to Army researchers, this vision will only succeed if artificial intelligence is perceived to be ethical.
In the 2012 film "Robot and Frank", the protagonist, a retired cat burglar named Frank, is suffering the early symptoms of dementia. Concerned and guilty, his son buys him a "home robot" that can talk, do household chores like cooking and cleaning, and reminds Frank to take his medicine. It's a robot the likes of which we're getting closer to building in the real world.
Imagine you are playing an immersive game in which you are dropped into an unknown landscape with a directive to find a certain location. To advance forward in the game, you must also map the terrain so that you can then share your initial location and your map with another remote player. You have now been given a problem that, within the world of robotics is called SLAM. You have been asked to simultaneously localize and map an unknown environment.
Reservoir computing is a highly promising computational framework based on artificial recurrent neural networks (RNNs). Over the past few years, this framework was successfully applied to a variety of tasks, ranging from time-series predictions (i.e., stock market or weather forecasting), to robotic motion planning and speech recognition.
Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS) and ETH Zürich have recently created HuggieBot 2.0, a robot that can hug users at their request. This robot, set to be presented at the ACM/IEEE International Conference on Human-Robot Interaction (HRI) in March, builds on a previous robotic system created by Alexis E. Block, one of the authors, during her Master's degree.