From disaster zones to extreme environments, there remain areas difficult for even humans to reliably access. This poses a problem for search-and-rescue operations, research, surveillance, and more. Now, however, a research team from Osaka University and Diponegoro University, Indonesia is hard at work on one potential solution: the cyborg insect.
To be successfully deployed on a large-scale and in a wide range of real-world settings, robots should be able to rapidly adjust their movements while interacting with humans and their surroundings, responding to changes in their environment. Many robots developed so far, however, perform significantly better in controlled environments, while they often struggle in unstructured settings.
A biohybrid hand which can move objects and do a scissor gesture has been built by a team at the University of Tokyo and Waseda University in Japan. The researchers used thin strings of lab-grown muscle tissue bundled into sushi-like rolls to give the fingers enough strength to contract.
Recent technological advances have opened new possibilities for the development of robotic systems, including spacecraft for the exploration of other planets. These new systems could ultimately contribute to our understanding of our galaxy and the unique characteristics of the many celestial objects it contains.
A new type of soft robot can crawl like a worm, climb cables, and suddenly snap into a completely different shape to move in a new direction—all controlled by a single air input. This breakthrough, developed by researchers at Seoul National University, introduces a fundamentally new way for soft robots to move and adapt to their surroundings. The work is published in the journal Cell Reports Physical Science.
While exploring how best to design robots that use tails to reorient their bodies in midair, a team of researchers at the University of Michigan and University of California San Diego found that mammals had already figured out how to do more with less.
A team of engineers at Westlake University, Zhejiang Normal University and Shaoxing University, all in China, has tested the possibility of making some robot parts biodegradable. In their project, published in the journal Science Advances, the group made some robot components using cotton cellulose films and pork gelatin.
Imagine a swarm of tiny robots, each about the size of the palm of your hand, spreading out over a wildfire-ravaged community, mapping areas contaminated by toxic materials, searching for survivors, identifying areas of rapid wildfire spread. Or picture the robots being used to clear battlefields of mines, conduct search and rescue missions after earthquakes, or deployed on farms to fend against pests and track soil conditions.
More than 2 million adults living in the United States rely on a caregiver's assistance to eat daily meals. In addition to human caregivers, technology has been developed to provide assistance. For example, tabletop and wheelchair-mounted robotic arms have been programmed to pick up foods and bring them to the human operator.
A team of engineers at Apple Computer has developed an expressive table lamp that interacts with a user rather than simply carrying out instructions. The group has posted a paper on the arXiv preprint server describing the factors that went into the development of the lamp and its current features. They have also posted several videos showing the robot lamp in action.
A team of AI and robotics researchers at Carnegie Mellon University, working with a pair of colleagues from technology company NVIDIA, has developed a new model for training robots to move like human athletes.
Recent advances in the fields of human-infrastructure interaction, electronic engineering, robotics and artificial intelligence (AI) have opened new possibilities for the development of assistive and medical technologies. These include devices that can assist individuals with both physical and cognitive disabilities, supporting them throughout their daily activities.
Drone shows are an increasingly popular form of large-scale light display. These shows incorporate hundreds to thousands of airborne bots, each programmed to fly in paths that together form intricate shapes and patterns across the sky. When they go as planned, drone shows can be spectacular. But when one or more drones malfunction, as has happened recently in Florida, New York, and elsewhere, they can be a serious hazard to spectators on the ground.
A team of engineers and roboticists at the University of Hong Kong have designed, built and tested an aerial robot capable of navigating unknown environments safely at high speeds while avoiding obstacles. In their paper published in the journal Science Robotics, the group describes how they overcame problems encountered by others attempting to build similar robots and how well their quadcopter robot, called SUPER, performed during testing.
A humanoid robot gyrates to pulsing music at a shopping mall in Beijing, part of an exhibition harnessing artificial intelligence to enhance the flavor of China's biggest annual festival.