A team of researchers, led by Matthew Gombolay, an assistant professor in the School of Interactive Computing and director of the Cognitive Optimization and Relational (CORE) Robotics Lab at Georgia Tech, are using the sport of table tennis to showcase that humans may not always trust a robot's explanation of its intended action.
Roboticists have developed many advanced systems over the past decade or so, yet most of these systems still require some degree of human supervision. Ideally, future robots should explore unknown environments autonomously and independently, continuously collecting data and learning from this data.
It isn't just artists and teachers who are losing sleep over advances in automation and artificial intelligence. Robots are being brought into Hinduism's holiest rituals—and not all worshippers are happy about it.
It isn't just artists and teachers who are losing sleep over advances in automation and artificial intelligence. Robots are being brought into Hinduism's holiest rituals—and not all worshippers are happy about it.
Robots are all around us, from drones filming videos in the sky to serving food in restaurants and diffusing bombs in emergencies. Slowly but surely, robots are improving the quality of human life by augmenting our abilities, freeing up time, and enhancing our personal safety and well-being. While existing robots are becoming more proficient with simple tasks, handling more complex requests will require more development in both mobility and intelligence.
Recently, a research team from Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, proposed a bionic quadruped soft thin-film microrobot actuated by magnetic fields with a mass of only 41 mg, which promises to be applied to stomach examination and treatment. Researchers realized the multimodal locomotion control of the soft microrobot in magnetic fields and the grasping and transportation of micro-objects by the soft microrobot.
Researchers from North Carolina State University and Iowa State University have demonstrated an automated technology capable of accurately measuring the angle of leaves on corn plants in the field. This technology makes data collection on leaf angles significantly more efficient than conventional techniques, providing plant breeders with useful data more quickly.
Robotics specialists from a group led by ETH professor Raffaello D'Andrea have created a new, cube-shaped robot that can balance on its pivot and compensate for external disturbances. What makes the One-Wheel Cubli unique? Unlike its predecessors, it only requires a single reaction wheel.
Researchers from Bochum and Saarbrücken have detected security vulnerabilities, some of them serious, in several drones made by the manufacturer DJI. These enable users, for example, to change a drone's serial number or override the mechanisms that allow security authorities to track the drones and their pilots. In special attack scenarios, the drones can even be brought down remotely in flight.
As technology advances rapidly, the gap between the speed of policy development and technological change is becoming more prominent. This is particularly true in robotics, where current legislation often lags behind and fails to adequately frame robot technologies. This gap increases legal uncertainty and poses safety risks, as developers may not know which regulatory frameworks to follow. The resulting technology may thus perform poorly and lead to biases and discrimination.
If animals and insects can jump across grass and sand, why can't robots? Sarah Bergbreiter, Professor of Mechanical Engineering, has found that researchers don't have to look far to enable this in robots. Existing latch mechanisms that were once thought of as an 'on' or 'off' switch to release stored energy can also be used to control jump performance across a wide range of terrains.
Are drones really energy efficient? That depends on the average wind speed. An Argonne study compares drone energy usage to diesel trucks and electric vehicles and aims to help industry determine if they could save money with drone delivery.
Researchers at Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in Genoa has realized a new soft robot inspired by the biology of earthworms, which is able to crawl thanks to soft actuators that elongate or squeeze, when air passes through them or is drawn out.
While robots have become increasingly advanced over the past few years, most of them are still unable to reliably navigate very crowded spaces, such as public areas or roads in urban environments. To be implemented on a large-scale and in the smart cities of the future, however, robots will need to be able to navigate these environments both reliably and safely, without colliding with humans or nearby objects.
Ankle exoskeletons that can help people extend their endurance are a step closer to reality with a new control algorithm, developed at the University of Michigan, that could enable future exoskeletons to automatically adapt to individual users and tasks. This would reduce or eliminate the need for manual recalibration.