A two-legged robot just made history.
Add analog and air-driven to the list of control system options for soft robots.
A new study highlights specific dog behaviors that dog owners perceive as important for bonding with their pets. Katie Riddoch of the University of Glasgow, Scotland, and colleagues present these findings in the open-access journal PLOS ONE on September 28.
One reason that it's so difficult to deliver large protein drugs orally is that these drugs can't pass through the mucus barrier that lines the digestive tract. This means that insulin and most other "biologic drugs"—drugs consisting of proteins or nucleic acids—have to be injected or administered in a hospital.
When self-propelling objects interact with each other, interesting phenomena can occur. Birds align with each other when they flock together. People at a concert spontaneously create vortices when they nudge and bump into each other. Fire ants work together to create rafts that float on the water's surface.
A review paper by scientists at the University of Oxford discussed possible benefits of using humanoid musculoskeletal robots and soft robotic systems as bioreactor platforms in producing clinically useful tendon constructs.
Tool use has long been a hallmark of human intelligence, as well as a practical problem to solve for a vast array of robotic applications. But machines are still wonky at exerting just the right amount of force to control tools that aren't rigidly attached to their hands.
UC Riverside engineers are developing low-cost, robotic "clothing" to help children with cerebral palsy gain control over their arm movements.
Cornell University researchers have installed electronic "brains" on solar-powered robots that are 100 to 250 micrometers in size—smaller than an ant's head—so that they can walk autonomously without being externally controlled.
Algae bloom, birds flock, and insects swarm. This en masse behavior by individual organisms can provide separate and collective good, such as improving chances of successful mating propagation or providing security. Now, researchers have harnessed the self-organization skills required to reap the benefits of natural swarms for robotic applications in artificial intelligence, computing, search and rescue, and much more.
The technology, which has been tested in the lab, could ultimately be used for manufacturing and building in difficult-to-access or dangerous locations such as tall buildings or help with post-disaster relief construction, say the researchers.
Skoltech researchers have developed a method to enable wheeled robots to avoid obstacles in a fast, efficient, and natural way when moving in a crowded setting. Reported in IEEE Robotics and Automation Letters, the new motion planner leverages machine learning and could be useful for robotic disinfection, inventory counting, and car parking.
Robotic eyes on autonomous vehicles could improve pedestrian safety, according to a new study at the University of Tokyo. Participants played out scenarios in virtual reality (VR) and had to decide whether to cross a road in front of a moving vehicle or not. When that vehicle was fitted with robotic eyes, which either looked at the pedestrian (registering their presence) or away (not registering them), the participants were able to make safer or more efficient choices.
Ever since the Wright brothers innovated in the back of their bicycle shop in Dayton, Ohio, aviation has been—at heart—a nuts-and-bolts endeavor. For all the sophisticated equipment Idaho National Laboratory's Unmanned Aerial Systems team has at its disposal for testing high-tech cameras, radios and sensors, there is still a lot of gearhead ingenuity involved.
A team of researchers at Soochow University, working with two colleagues from the Max Planck Institute for Intelligent Systems and another from Harbin Institute of Technology has developed a type of soft robot that can be split into tinier components to pass through small spaces and then reassemble. In their paper published in the journal Science Advances, the group describes how they made their tiny robots and suggest possible uses for them.