If animals and insects can jump across grass and sand, why can't robots? Sarah Bergbreiter, Professor of Mechanical Engineering, has found that researchers don't have to look far to enable this in robots. Existing latch mechanisms that were once thought of as an 'on' or 'off' switch to release stored energy can also be used to control jump performance across a wide range of terrains.
Are drones really energy efficient? That depends on the average wind speed. An Argonne study compares drone energy usage to diesel trucks and electric vehicles and aims to help industry determine if they could save money with drone delivery.
Researchers at Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in Genoa has realized a new soft robot inspired by the biology of earthworms, which is able to crawl thanks to soft actuators that elongate or squeeze, when air passes through them or is drawn out.
While robots have become increasingly advanced over the past few years, most of them are still unable to reliably navigate very crowded spaces, such as public areas or roads in urban environments. To be implemented on a large-scale and in the smart cities of the future, however, robots will need to be able to navigate these environments both reliably and safely, without colliding with humans or nearby objects.
Ankle exoskeletons that can help people extend their endurance are a step closer to reality with a new control algorithm, developed at the University of Michigan, that could enable future exoskeletons to automatically adapt to individual users and tasks. This would reduce or eliminate the need for manual recalibration.
Amazon has identified a financially beneficial way for robots and humans to coexist, and it's saving the online enterprise half a billion dollars per year. Using robots to bring shelves of inventory to associates to pick customer orders cuts down the distance traveled by robots and decreases the company's storage footprint.
For autonomous cars to be able to navigate, their optic sensors—like cameras and laser—require a clear view. Now, researchers at Örebro University have successfully improved the precision in radar sensors for navigation to such a degree that the sensors can be used in autonomous cars, making them for safe driving whatever the weather.
A tiny robot that could one day help doctors perform surgery was inspired by the incredible gripping ability of geckos and the efficient locomotion of inchworms.
Octopus arms coordinate nearly infinite degrees of freedom to perform complex movements such as reaching, grasping, fetching, crawling, and swimming. How these animals achieve such a wide range of activities remains a source of mystery, amazement, and inspiration. Part of the challenge comes from the intricate organization and biomechanics of the internal muscles.
A team of scientists has developed electronic skin that could pave the way for soft, flexible robotic devices to assist with surgical procedures or aid people's mobility.
Over the past year, images from Ukraine have often portrayed a war resembling other conflicts from the past half-century. Russian forces deploy tanks, fighter planes, warships, amphibious vehicles and attack helicopters. Ukrainians fight back with anti-tank weapons, grenade launchers and anti-aircraft missiles. This is how much of the war appears on the ground.
Ben-Gurion University of the Negev engineer Dr. David Zarrouk and his student Omer Guetta have developed AmphiSAW, one of the fastest and most efficient amphibious robots. Befitting the director and member of the Bioinspired and Medical Robotics Lab, the robot's movement in water is inspired by the movement of flippers and its land movements are inspired by centipedes.
The U.S. military is intensifying its commitment to the development and use of autonomous weapons, as confirmed by an update to a Department of Defense directive. The update, released Jan. 25, 2023, is the first in a decade to focus on artificial intelligence autonomous weapons. It follows a related implementation plan released by NATO on Oct. 13, 2022, that is aimed at preserving the alliance's "technological edge" in what are sometimes called "killer robots."
Robots could be valuable assistants for most first responders, as they could help them to remotely monitor or intervene in areas that are inaccessible or life-threatening for humans. Firefighters, who are at high risk of getting injured during their missions, would undoubtedly benefit from the assistance of reliable mobile robots.
A team of roboticists from Seoul National University, Gwangju Institute of Science and Technology and Pusan National University, all in the Republic of Korea, has developed a new kind of robotic eye that can see better under uneven illumination conditions. In their paper published in the journal Science Robotics the group describes using attributes of cuttlefish as a template for their new design.