ROBOTT-NET pilot project: Cobots for safe and cheap assembly of frequency converters

At Danfoss in Gråsten, the Danish Technological Institute (DTI) is testing, as part of a pilot project in the European robot network ROBOTT-NET, several robot technologies: Manipulation using force sensors, simpler separation of items and a 3D-printed three-in-one gripper for handling capacitors, nuts and a socket handle.

“The set-updemonstrates various techniques that provide a cheaper solution, increased robustness and increased safety for operators”, says Søren Peter Johansen Technology Manager at DTI.

“For example, there is a force-torque sensor in the robot which is used to manoeuvre things carefully into place, and also to increase the confidence of the operators. The force-torque sensor will sense and prevent collisions with people before the built-in safety features of the robot stop the robot arm. Thus, we can also increase safety and confidence by working with collaborative robots”, he says.

Increased effectiveness
Danfoss in Gråsten has tested the robot in connection with the company’s production of frequency converters.

“A frequency converter contains, amongst other things, capacitors assembled in groups of two or four. We have automated this process in that a robot picks up a capacitor and puts it into a fixture. For the capacitor to be correctly placed in the fixture, the electrodes must point in the right direction. Therefore, a camera sees how the electrodes are oriented in the gripper, and orients correctly before it is placed in the fixture”, explains Søren Peter Johansen.

“Then we pick a nut that has to be put on and the robot picks up the socket handle and screws the nut tight. And meanwhile the operator can do something else and thus increases efficiency”, he elaborates.

Three reasons to automate
Peter Lund Andersen, Senior Manufacturing Specialist at Danfoss, says that Danfoss is automating for several reasons:

“It is primarily about work and environmental considerations – better ergonomics and less heavy lifting. We believe that with robots, that can do the work uniformly each time, we can increase the quality of our products while maintaining safety and reducing costs”, he says, adding “The cooperation with DTI gives us the opportunity to come out and try some new things. Some things that aren’t quite mature yet and can’t just be taken off a shelf. That way we are at the forefront with everything.”

If you want to watch more videos, you can explore ROBOTT-NET’s pilot projects on our YouTube-channel.

ROBOTT-NET pilot project: Urban pest control


“Within the framework of the European project ROBOTT-NET we are developing software and robotic solutions for the prevention and control of rodents in enclosed spaces”, says Marco Lorenzo, Service Supervisor at Irabia Control De Plagas.

You can learn more about the urban pest control project here:

This type of prevention is designed to help technicians and companies have better efficiency and control and a faster response, when it comes to controlling rodent pests.

“The project uses a mobile autonomous robotic platform with a robot arm to introduce a camera into the trap. It captures an image that is uploaded to the cloud”.

“The project is in collaboration with Robotnik, which is responsible for the assembly of the robot; and Hispavista, which is in charge of the cloud part”, Marco Lorenzo adds.

Aritz Zabaleta, a Systems Technician at Hispavista Labs explains that the application consists of two components:

“The first manages the entire fleet of robots that communicate with the server in the cloud and it processes the information collected by them. The second component is the one that allows customers to access processed images”.

If you want to watch more fascinating robotics videos, you can explore ROBOTT-NET’s pilot projects on our YouTube-channel.

First results of the ROSIN project: Robotics Open-Source Software for Industry

Open-Source Software for robots is a de-facto standard in academia, and its advantages can benefit industrial applications as well. The worldwide ROS-Industrial initiative has been using ROS, the Robot Operating System, to this end.

In order to consolidate Europe’s expertise in advanced manufacturing, the H2020 project ROSIN supports EU’s strong role within ROS-Industrial. It will achieve this goal through three main actions on ROS: ensuring industrial-grade software quality; promoting new business-relevant applications through so-called Focused Technical Projects (FTPs); supporting educational activities for students and industry professionals on the one side conducting ROS-I trainings as well as and MOOCs and on the other hand by supporting education at third parties via Education Projects (EPs).

Now it is easier to get an overview of first results from ROSIN at http://rosin-project.eu/results.

Collage of Focused Techincal Projects (FTPs) supported by ROSIN
Focused Techincal Projects (FTPs) supported by ROSIN

Browse through vendor-developed ROS drivers for industrial hardware, generic ROS frameworks for industrial applications and model based tooling. Thanks to ROSIN support, all of these new ROS components are open-sourced for the benefit of the ROS-Industrial community. Each entry leads to a minipage that is maintained by the FTP champion, so check back often for updates on the progress of the projects.

The project is continuously accepting FTP project proposals to advance open-source robot software. New incoming proposals are evaluated every 3 months (approximately). The next cut-off dates will be 14. September and 16. November 2018. Further calls can be expected throughout the project runtime (January 2017 – December 2020).

European robot network helps nurses and home builders

Four knowledge institutes across Europe – the Danish Technological Institute (DTI, DK), Fraunhofer IPA (DE), Tecnalia (ES) and the Manufacturing Technology Centre (MTC, UK) – teamed up to offer highly qualified consulting services at no cost to companies that either wanted to use robot technology in their production or wanted to develop new robot technology to sell.

It’s been two years since the European project ROBOTT-NET kicked off and more than 60 projects have been executed with success and 1500 people have come to visit ROBOTT-NETs Open Labs. ROBOTT-NET has among other things helped nurses in F&P Robotics’ voucher. The project “Robot Assistant for Nurses” (RAN) aimed to automate frequent and labor intensive tasks of material preparation before the taking of blood samples.

ROBOTT-NET also helped make home builders’ lives easier with Robot at Works voucher project. The goal of the project was to use digital data in building projects to automate production directly on the building site.

The robot network has also worked with the Swastebot – a specialised waste sorting robot. The company Sadako developed a disruptive system for the recovery of valuable materials such as cans, bottles, bricks etc. in waste treatment plants. The system is based on artificial intelligence for material detection.

In total ROBOTT-NET has worked with 62 projects with companies such as Danfoss, Kärcher, Air Liquide and Nissan.

Now, eight projects have been selected for a Pilot to strengthen robotics development and the competitiveness of European Manufacturing even further. The projects will be teamed up with a real-world use cases and ROBOTT-NET will take the projects all the way to the market – to make even more robotics ideas in industrial and professional service robotics a reality.

You can check out what ROBOTT-NET has achieved so far in this video:

If you want to stay updated on ROBOTT-NET and the events in the projects, you can follow ROBOTT-NET on Twitter and LinkedIn.

ROBOTT-NET use case: Danfoss automated assembly line

Short delivery time, high flexibility and reduced costs for handling parts before assembly. These are the main goals that Danfoss Drives wanted to achieve by creating an automated assembly line. But while the goals were clear, the way to achieve them was cloudier.

“How to do it and with what technology, we haven’t decided yet. And that’s what we’re seeking help for”, says Technology Engineer Peter Lund Andersen from Danfoss Drives.

To find out which technologies and solutions are suitable for an automated assembly line Danfoss Drive received assistance from Danish Technological Institute’s Center for Robot Technology.

Danfoss Drives is namely one of the Danish companies that has received a so-called “voucher” through ROBOTT-NET, which offers a network of the leading European technological service institutes in robotics.

With the voucher, Danfoss Drive has an easy access to high technological solutions and robot experts outside of Denmark.

The challenge for Danfoss Drives has been that all their products are delivered in many different forms of packaging. They now want to pick the products automatically.

“Having more technological service institutes involved in the project means that we can draw on the core competence within each service institute and thereby combine each competence into one joint, great solution”, says Peter Lund Andersen. Adding that, “we have given quite a few of our tasks to English MTC, that specializes in mechanical construction. In Odense at the Danish Technological Institute they are experts in vision technology, so they take care of that part”.

You can check out Danfoss Drives’ voucher page here and watch the video of the use case below.

The main purpose of ROBOTT-NET is to gather and share the latest knowledge about robot technology that can improve production in European companies.

Note: ROBOTT-NET will be at HANNOVER MESSE from April 24-27, 2018. If you are there, make sure you pass by Stand G46 in Hall 6 by the European Commission and see project results from EU-funded projects like nextgenio, ultraSURFACE, covr, fed4sae, DiFiCIL, IPP4CPPS, Smart Anything Everywhere (SAE), RADICLE, cloudSME, BEinCPPS, CloudiFacturing & Fortissimo.

Five projects make the first cut and receive a ROBOTT-NET pilot


It all started with 166 companies spread across 12 European countries appling for a “golden ticket” to ROBOTT-NET’s Voucher Program. 64 companies received a voucher and highly specialized consultancy from a broad range of the brightest robotics experts around Europe. Now five of the 64 projects have been selected for a ROBOTT-NET pilot.

Trumpf, Maser, Picolo, Weibel and Air Liquide are the five companies that will have their technology implemented in a pilot on a real-world use case.

Their voucher work varies greatly. Whilst Trumpf wanted to find out if automated handling of a large variety of sheet metal parts was possible, Picolo was working on generating welding robot programs. Weibel concentrated on flexible PCB Soldering and Air Liquide focused on autonomous goods picking, handling and transportation in industrial environments. Finally, Maser investigated automated systems to detect types of defects in chromed parts.

ROBOTT-NETs mission is to collect and share the latest knowledge about robot technology that can improve production, bring new ideas to market and ensure economic competitiveness.

The pilot will help the companies develop their voucher work through proof of concept level and accelerate it towards commercialisation. It will be a medium-scale research installation that will last for up to 18 months, developing the robot-technology and business case explored in the voucher stage, and applying it to an industrial demonstrator at an end user’s site.

When selecting the five projects, ROBOTT-NET was looking for pilots that will scale well across new applications and create high impact on markets through enhanced productivity, competition and disruption. Scalability and market impact were key measures in the Pilot application.

Other than these five projects, there are more pilots to look forward to as three more pilots will be announced soon.

If you want to know more about the five projects that have been selected for a pilot you can find them on ROBOTT-NET or ROBOTT-NET’s YouTube channel.

Trumpf

Maser

Picolo

Weibel

Air Liquide

Note: ROBOTT-NET will be at HANNOVER MESSE from April 24-27, 2018. If you are there, make sure you pass by Stand G46 in Hall 6 by the European Commission and see project results from EU-funded projects like nextgenio, ultraSURFACE, covr, fed4sae, DiFiCIL, IPP4CPPS, Smart Anything Everywhere (SAE), RADICLE, cloudSME, BEinCPPS, CloudiFacturing & Fortissimo.

European digital innovation hub strengthens robotics development

Digital innovation hubs are vital to create innovative solutions and employment. ROBOTT-NET is an example of a digital innovation hub, where four leading Research Technology Organizations (RTOs) in Europe aim to strengthen robotics development and the competitiveness of European Manufacturing.

The main objective of ROBOTT-NET is to create a sustainable European infrastructure to support novel robotic technologies on their path to market.

ROBOTT-NET includes Danish Technological Institute (DTI,DK), Fraunhofer IPA (DE), Tecnalia (ES) and The Manufacturing Technology Centre (MTC,UK).

The initiative combines European competencies in state-of-the art applied robotics and enables companies to benefit from Danish, German, Spanish and British expertise, says project coordinator Kurt Nielsen of DTI’s Centre for Robot Technology.

By offering highly qualified consulting services, ROBOTT-NET contributes to an easy access to specialist expertise and helps companies of all sizes bring their ideas to the market and optimize the production.

During the project ROBOTT-NET has arranged Open Labs in Denmark, Germany, England and Spain, where companies can learn about robotics opportunities.

Any European company that wanted to use or produce robots has been invited to apply for a voucher, which is the backbone of the program. Big manufacturers, garage start-ups and everything in between were eligible as long as the idea was concrete enough.

64 projects were selected and received a voucher. The voucher entitled the companies to approximately 400 hours of free consulting with robotics experts from all over Europe at the four partner locations.

Amongst these 64 projects ROBOTT-NET has assisted Orifarm in developing vision system for identifying new medicin boxes, helped AirLiquide in developing an autonomous mobile robot for handling of high pressure containers and supported Trumpf in developing a robot gripper that can perform unstructured bin picking of large metal sheets.

Additionally, eight projects will be selected for a ROBOTT-NET pilot, that will help the companies develop their voucher work through proof of concept level and accelerate it towards commerciality.

Check out the voucher page on ROBOTT-NET.eu and get inspired by the work that already has been done between European Companies and Research Technology Organizations.