Category Robotics Classification

Page 235 of 587
1 233 234 235 236 237 587

A system that allows robots to use tools creatively by leveraging large language models

Researchers at Carnegie Mellon University and Google DeepMind recently developed RoboTool, a system that can broaden the capabilities of robots, allowing them to use tools in more creative ways. This system, introduced in a paper published on the arXiv preprint server, could soon bring a new wave of innovation and creativity to the field of robotics.

Inch by inch, this machine is leading soft robotics to a more energy efficient future

Princeton researchers have developed a flexible, lightweight and energy efficient soft robot that moves without the use of any legs or rotary parts. Instead, the device uses actuators that convert electrical energy into vibrations that allow it to wiggle from point to point using only a single watt.

Ghostbuster: Detecting Text Ghostwritten by Large Language Models


The structure of Ghostbuster, our new state-of-the-art method for detecting AI-generated text.

Large language models like ChatGPT write impressively well—so well, in fact, that they’ve become a problem. Students have begun using these models to ghostwrite assignments, leading some schools to ban ChatGPT. In addition, these models are also prone to producing text with factual errors, so wary readers may want to know if generative AI tools have been used to ghostwrite news articles or other sources before trusting them.

What can teachers and consumers do? Existing tools to detect AI-generated text sometimes do poorly on data that differs from what they were trained on. In addition, if these models falsely classify real human writing as AI-generated, they can jeopardize students whose genuine work is called into question.

Our recent paper introduces Ghostbuster, a state-of-the-art method for detecting AI-generated text. Ghostbuster works by finding the probability of generating each token in a document under several weaker language models, then combining functions based on these probabilities as input to a final classifier. Ghostbuster doesn’t need to know what model was used to generate a document, nor the probability of generating the document under that specific model. This property makes Ghostbuster particularly useful for detecting text potentially generated by an unknown model or a black-box model, such as the popular commercial models ChatGPT and Claude, for which probabilities aren’t available. We’re particularly interested in ensuring that Ghostbuster generalizes well, so we evaluated across a range of ways that text could be generated, including different domains (using newly collected datasets of essays, news, and stories), language models, or prompts.

Read More
Page 235 of 587
1 233 234 235 236 237 587