Category robots in business

Page 297 of 447
1 295 296 297 298 299 447

Women in Robotics panel celebrating Ada Lovelace Day

We’d like to share the video from our 2020 Ada Lovelace Day celebration of Women in Robotics. The speakers were all on this year’s list, last year’s list, or nominated for next year’s list! and they present a range of cutting edge robotics research and commercial products. They are also all representatives of the new organization Black in Robotics which makes this video doubly powerful. Please enjoy the impactful work of:

Dr Ayanna Howard – Chair of Interactive Computing, Georgia Tech

Dr Carlotta Berry – Professor Electrical and Computer Engineering at Rose-Hulman Institute of Technology

Angelique Taylor – PhD student in Health Robotics at UCSD and Research Intern at Facebook

Dr Ariel Anders – roboticist and first technical hire at Robust.AI

Moderated by Jasmine Lawrence – Product Manager at X the Moonshot Factory

Follow them on twitter at @robotsmarts @DRCABerry @Lique_Taylor @Ariel_Anders @EDENsJasmine

Some of the takeaways from the talk were collected by Jasmine Lawrence at the end of the discussion and include the encouragement that you’re never too old to start working in robotics. While some of the panelists knew from an early age that robotics was their passion, for others it was a discovery later in life. Particularly as robotics has a fairly small academic footprint, compared to the impact in the world.

We also learned that Dr Ayanna Howard has a book available “Sex, Race and Robots: How to be human in the age of AI”

Another insight from the panel was that as the only woman in the room, and often the only person of color too, the pressure was on to be mindful of the impact on communities of new technologies, and to represent a diversity of viewpoints. This knowledge has contributed to these amazing women focusing on robotics projects with significant social impact.

And finally, that contrary to popular opinion, girls and women could be just as competitive as male counterparts and really enjoy the experience of robotics competitions, as long as they were treated with respect. That means letting them build and program, not just manage social media.

You can sign up for Women in Robotics online community here, or the newsletter here. And please enjoy the stories of 2020’s “30 women in robotics you need to know about” as well as reading the previous years’ lists!

Robots deciding their next move need help prioritizing

As robots replace humans in dangerous situations such as search and rescue missions, they need to be able to quickly assess and make decisions—to react and adapt like a human being would. Researchers at the University of Illinois at Urbana-Champaign used a model based on the game Capture the Flag to develop a new take on deep reinforcement learning that helps robots evaluate their next move.

A gecko-adhesive gripper for the Astrobee free-flying robot

Robots that can fly autonomously in space, also known as free-flying robots, could soon assist humans in a variety of settings. However, most existing free-flying robots are limited in their ability to grasp and manipulate objects in their surroundings, which may prevent them from being applied on a large-scale.

‘Digit’ robot for sale and ready to perform manual labor

Robot maker Agility, a spinoff created by researchers from Oregon State University, has announced that parties interested in purchasing one of its Digit robots can now do so. The human-like robot has been engineered to perform manual labor, such as removing boxes from shelves and loading them onto a truck. The robot can be purchased directly from Agility for $250,000.

#321: Empowering Farmers Through RootAI, with Josh Lessing

In this episode, Abate interviews Josh Lessing, co-founder and CEO of RootAI. At RootAI they are developing a system that tracks data on the farm and autonomously harvests crops using soft grippers and computer vision. Lessing talks about the path they took to build a product with good market fit and how they brought a venture capital backed startup to market.

Josh Lessing

Josh is one of the world’s leading minds on developing robotics and AI systems for the food industry, previously serving as the Director of R&D at Soft Robotics Inc. His current venture, Root AI, is integrating advanced robotics, vision systems and machine perception to automate agriculture. Josh was a Postdoctoral Fellow in Materials Science & Robotics at Harvard University, having earned his Ph.D. studying Biophysics & Physical Chemistry at the Massachusetts Institute of Technology and received an Sc.B. in Chemistry from Brown University.

Links

Robot swarms follow instructions to create art

By Conn Hastings, science writer

Controlling a swarm of robots to paint a picture sounds like a difficult task. However, a new technique allows an artist to do just that, without worrying about providing instructions for each robot. Using this method, the artist can assign different colors to specific areas of a canvas, and the robots will work together to paint the canvas. The technique could open up new possibilities in art and other fields.

What if you could instruct a swarm of robots to paint a picture? The concept may sound far-fetched, but a recent study in open-access journal Frontiers in Robotics and AI has shown that it is possible. The robots in question move about a canvas leaving color trails in their wake, and in a first for robot-created art, an artist can select areas of the canvas to be painted a certain color and the robot team will oblige in real time. The technique illustrates the potential of robotics in creating art, and could be an interesting tool for artists. This human-swarm interaction modality may also provide a basis for collaborative studies combining the arts and other sciences.

Creating art can be labor-intensive and an epic struggle. Just ask Michelangelo about the Sistine Chapel ceiling. For a world increasingly dominated by technology and automation, creating physical art has remained a largely manual pursuit, with paint brushes and chisels still in common use. There’s nothing wrong with this, but what if robotics could lend a helping hand or even expand our creative repertoire?

“The intersection between robotics and art has become an active area of study where artists and researchers combine creativity and systematic thinking to push the boundaries of different art forms,” said Dr. María Santos of the Georgia Institute of Technology. “However, the artistic possibilities of multi-robot systems are yet to be explored in depth.”

This latest study looks at the potential for robot swarms to create a painting. The researchers designed a system whereby an artist can designate different regions of a canvas to be painted a specific color. The robots interact with each other to achieve this, with individual robots traversing the canvas and leaving a trail of colored paint behind them, which they create by mixing paints of different colors available on-board.

“The multi-robot team can be thought of as an “active” brush for the human artist to paint with, where the individual robots (the bristles) move over the canvas according to the color specifications provided by the human,” explained Santos.

In their experiments, the researchers used a projector to simulate a colored paint trail behind each robot, and they plan to develop robots that can handle liquid paint in the future. As a result of the developed system, even when some robots didn’t have access to all the pigments required to create the assigned color, they were still able to work together and approximate the color reasonably well.

This system could allow artists to control the robot swarm as it creates the artwork in real time. The artist doesn’t need to provide instructions for each individual robot, or even worry whether they have access to all the colors needed, allowing them to focus on creating the painting.

In the current study, the resulting images are abstract, and resemble a child’s crayon drawing. They show unique areas of color that flow into each other, revealing the artist’s input, and are pleasing to the eye. Future versions of the system may allow for more refined images.

Most importantly, the images confirm that it is possible for an artist to successfully instruct a robot swarm to paint a picture. The technique may also have potential in other fields where easily controlling the actions of a swarm of robots could be valuable. Robot orchestra, anyone?

Credit: M. Santos and coauthors

This article was initially published on the Frontiers blog. Original article: Interactive Multi-Robot Painting Through Colored Motion Trails

A virtual reality game that integrates tactile experiences using biometric feedback

Over the past few decades, technological advances have enabled the development of increasingly sophisticated, immersive and realistic video games. One of the most noteworthy among these advances is virtual reality (VR), which allows users to experience games or other simulated environments as if they were actually navigating them, via the use of electronic wearable devices.
Page 297 of 447
1 295 296 297 298 299 447