Category robots in business

Page 297 of 460
1 295 296 297 298 299 460

Robotics trends at #CES2021

CES banner

Even massive events like the 54th edition of Consumer Electronics Show (CES) have gone virtual due to the current pandemic. Since 1967, the Consumer Technology Association (CTA), which is the North American trade association for the consumer technology industry, has been organising the fair, and this year was not going to be any different—well, except they had to take the almost 300,000m${}^2$ from CES 2020 to the cloud. In this post, I mainly put the focus on current and future hardware/robotics trends presented at CES 2021 (because we all love to make predictions, even during uncertain times).

“Innovation accelerates and bunches up during economic downturns only to be unleashed as the economy begins to recover, ushering in powerful waves of technological change”—Christopher Freeman, British Economist. With this quote, I start the first session on ‘my show’ of CES 2021, ‘Tech trends to watch’ by CTA (see their slides here). There are not-that-surprising trends such as Artificial Intelligence/Machine Learning or services like cloud computing, video streaming or remote learning, but let’s kick off with hardware/robotics. Steve Koenig (Vice President of Research for CTA) highlighted this recent study from Gartner that predicts Robotic Process Automation will become a \$2 billion global industry in 2021, and will continue growing with double figures through 2024.


Dual Arm Robot System (DARS) from ITRI

Lesley Rorhbaugh (Director of Research for CTA) also presented some other hardware/robotics trends for 2021, including digital health wearables going beyond your wrists (for example, the Oura ring can measure your body temperature or respiratory rate, and generate a health score based on the data collected during the day, making it a potential tool to detect early COVID-19 symptoms) or robot triage helpers to support during high influx of patients at hospitals and to reduce the exposure rate of hospital workers. We all know this past year has been marked by COVID-19. In a more focused session on ‘robots to the rescue’ chaired by Eugene Demaitre (Senior Editor at the Robot Report), he stated that “this year, the definition of what a frontline worker is has changed”. In fact, the field of rescue robots has expanded with the current pandemic. Not only are they applied to assist in disaster situations nowadays, but areas such as autonomous delivery of goods, automatic cleaning for indoor sanitising (such as ADIBOT) or even cooking (such as the kitchen robot by Moley)—as Lesley showed in her session.

ADIBOT
ADIBOT from UBTECH
Moley kitchen robot
Kitchen robot by Moley

“Delivery is actually the largest unautomated industry in the world”, Ahti Heinla (CEO of Starship Technologies) said. “From the consumers’ perspective, delivery today kind of works. You pay a couple bucks and you get what you want, or maybe you don’t pay these couple of bucks at all. It appears to be free. Well, guess what? It isn’t free, and while it might be working for the consumer, it isn’t always working for the company doing the delivery. They are looking for solutions.”

Startship delivery robot
Delivery robot by Startship Technologies

What’s more, there’s a shortage of drivers to cope with the exponential growth of deliveries, Kathy Winter (Vice President at the IoT group at Intel) mentioned. But automation comes with a price, and the management of autonomous delivery fleets isn’t straightforwards. In relation to drone delivery, James Burgess (CEO of Wing) said that “data is one of the key elements here. There’s so much to keep track of, both individual robots or airplanes as you have, but also the environment, the weather, the traffic, the other systems that are moving through.” One of the biggest challenges is to actually develop the platform that manages the fleets. But also, “you need to build hardware, build software, think about regulations, think about safety, think about the consumer adoption and value proposition. You also need to build an app”, Ahti expressed. When it comes to regulations (whether traffic regulations for autonomous vehicles or standards for safety on sidewalks), the technology is far more advanced, Kathy said. In her opinion, we need a common standard that certifies safety of autonomous ground/aerial vehicles to avoid having different safety levels depending on the vehicle.

Wing delivery drone
Delivery drone by Wing

As in recent years at CES, vehicle tech takes a huge part of the whole event. With the rise of 5G connectivity (expected to really kick off during 2021), not only are self-driving cars in the trends conversation, but also connectivity via Cellular V2X (Vehicle to Everything communication). This is especially remarkable, as the area of smart cities is also a current trend in development under the umbrella of the Internet of Things.


Hans Vestberg’s keynote at CES 2021 (CEO of Verizon)

As shown above, research into consumer habits and future technology trends is a huge part of the work that CTA does. Some preexisting tech has skyrocketed as a result of the current health crisis, as CTA’s latest research reveals. Indeed, the tech industry grew by 5.5% to \$442 billions during 2020 in the United States.

Tech trends forecast
5-year tech trends forecast by CTA

While hardware-related tech—which represents three quarters of the industry retail value—had a flat growth, services grew by a substantial 31%. It is not surprising that the overall five key trends including hardware, software and services that CTA found are: 1) remote learning (educational robots, AR/VR, STEM products), 2) digital entertainment (e.g. audio/video platforms or gaming), 3) smart homes (tech to improve energy efficiency, air/water quality, etc.), 4) online shopping (as exemplified above, autonomous grocery delivery is becoming a thing), and 5) personal vehicles & travel tech (did I mention autonomous vehicles already?). When it comes to their hardware forecast, their prediction for the short run points to smart homes technology (with home robots being a very popular choice) and digital health, an area worth \$845 millions, with a great opportunity for health-monitoring devices (e.g. wearables).

Samsung's Handy bot
Handy bot by Samsung


Dallara IL-15 racecar, the autonomous car designed for the Indy Autonomous Challenge in October, 2021

There was also room at CES 2021 for diversity, equity and inclusion (DEI). In the session chaired by Tiffany Moore (Senior Vice President, Political and Industry Affairs at CTA), invited speakers Dawn Jones (Acting Chief Diversity and Inclusion Officer & Global Director of Social Impact communications, policy and strategy at Intel) and Monica Poindexter (Head of Employee Relations and Inclusion & Diversity at Lyft) commented on the findings from the reports on diversity, inclusion and racial equity launched recently by Intel and Lyft. As stressed by both Dawn and Monica, retention and progression of employees from underrepresented groups is key for successful DEI in the long run. In fact, it can take at least one or two years before the outcome of DEI policies start to show up, Monica pointed out. Another crucial aspect both speakers shared is the support from the C-suite and middle managers. They all have to believe in the same DEI goals across the organisation. Active listening and the implementation of mechanisms for bottom-up feedback where employees can anonymously express their opinion and raise their concerns have also helped both companies improve their DEI. However, the two reports show there are still DEI barriers to break down (e.g. no more than 21.3% were females at senior, directors or executive levels at Intel in 2020, and there was an overall loss of 1.9% of the Black/African American employees at Lyft last year). That is why the work done by organisations such as Women in Robotics and Blacks in Robotics is vital to improve DEI inside companies. Still, a lot of work to be done.

Let’s hope #CES2022 returns to Las Vegas (because this will mean the pandemic is over). See you there!

An algorithm for optimizing the cost and efficiency of human-robot collaborative assembly lines

Robots are rapidly making their way into a variety of settings, including industrial and manufacturing facilities. So far, they have shown great potential for speeding up and automating a number of manufacturing processes by substituting or assisting human workers on assembly lines. To be adopted on a large scale, however, robots for manufacturing should be both efficient and relatively affordable.

How to keep drones flying when a motor fails

Drone with event camera

Robotics researchers at the University of Zurich show how onboard cameras can be used to keep damaged quadcopters in the air and flying stably – even without GPS.

As anxious passengers are often reassured, commercial aircrafts can easily continue to fly even if one of the engines stops working. But for drones with four propellers – also known as quadcopters – the failure of one motor is a bigger problem. With only three rotors working, the drone loses stability and inevitably crashes unless an emergency control strategy sets in.

Researchers at the University of Zurich and the Delft University of Technology have now found a solution to this problem: They show that information from onboard cameras can be used to stabilize the drone and keep it flying autonomously after one rotor suddenly gives out.

Spinning like a ballerina

“When one rotor fails, the drone begins to spin on itself like a ballerina,” explains Davide Scaramuzza, head of the Robotics and Perception Group at UZH and of the Rescue Robotics Grand Challenge at NCCR Robotics, which funded the research. “This high-speed rotational motion causes standard controllers to fail unless the drone has access to very accurate position measurements.” In other words, once it starts spinning, the drone is no longer able to estimate its position in space and eventually crashes.

One way to solve this problem is to provide the drone with a reference position through GPS. But there are many places where GPS signals are unavailable. In their study, the researchers solved this issue for the first time without relying on GPS, instead using visual information from different types of onboard cameras.

Event cameras work well in low light

The researchers equipped their quadcopters with two types of cameras: standard ones, which record images several times per second at a fixed rate, and event cameras, which are based on independent pixels that are only activated when they detect a change in the light that reaches them.

The research team developed algorithms that combine information from the two sensors and use it to track the quadrotor’s position relative to its surroundings. This enables the onboard computer to control the drone as it flies – and spins – with only three rotors. The researchers found that both types of cameras perform well in normal light conditions. “When illumination decreases, however, standard cameras begin to experience motion blur that ultimately disorients the drone and crashes it, whereas event cameras also work well in very low light,” says first author Sihao Sun, a postdoc in Scaramuzza’s lab.

Increased safety to avoid accidents

The problem addressed by this study is a relevant one, because quadcopters are becoming widespread and rotor failure may cause accidents. The researchers believe that this work can improve quadrotor flight safety in all areas where GPS signal is weak or absent.

Taking the lab into the ocean: A fleet of robots tracks and monitors microbial communities

Researchers from MBARI, the University of Hawai'i at Mānoa (UH Mānoa), and Woods Hole Oceanographic Institution, after years of development and testing, have successfully demonstrated that a fleet of autonomous robots can track and study a moving microbial community in an open-ocean eddy. The results of this research effort were recently published in Science Robotics.

Fish-inspired robots coordinate movements without any outside control

Schools of fish exhibit complex, synchronized behaviors that help them find food, migrate and evade predators. No one fish or team of fish coordinates these movements nor do fish communicate with each other about what to do next. Rather, these collective behaviors emerge from so-called implicit coordination—individual fish making decisions based on what they see their neighbors doing.

Wielding a laser beam deep inside the body

Minimally invasive surgeries in which surgeons gain access to internal tissues through natural orifices or small external excisions are common practice in medicine. They are performed for problems as diverse as delivering stents through catheters, treating abdominal complications, and performing transnasal operations at the skull base in patients with neurological conditions.

IEEE RAS Soft Robotics Podcast with Hod Lipson: Can we design self-aware robots?

Interesting discussion with Hod Lipson, head of Creative Machines Lab, Columbia University in New York. Can robots be self-aware? Can they design other robots and self-repair? Why should we evolve robots to do tasks that animals do so well? Why don’t we have useful autonomous robots in the real world yet? Find out Hod’s answers to these questions and updates on VoxCAD development for designing and simulation of soft robots in this episode of the IEEE RAS Soft Robotics Podcast.

What’s more, Hod gave his personal advice to roboticists being interviewed for an assistant professorship and to 1st-year robotics PhD students looking for a thesis topic, and he also commented on his approach to the ethical dilemma of military funding scientific research. I hope you enjoy listening to the episode! You can check Hod Lipson’s portfolio here: https://www.hodlipson.com/

You can also listen to this podcast on Spotify and Apple Podcasts, and explore support options on Patreon.

Page 297 of 460
1 295 296 297 298 299 460