Archive 10.10.2017

Page 3 of 3
1 2 3

Everything’s bigger in China

Recent news about growth of Chinese robotics and related AI indicate just how massive their investments are and how well they are paying off. For example, 90% of the personal robots on display at the IFA consumer electronics trade show held in Berlin in September were developed and manufactured by Chinese companies. 

Further, Preqin reported that Q3 venture-backed deals totaled $49 billion. Included in the top 10 deals were Uber-competitor Grab’s raising $2 billion from SoftBank and Didi Chuxing and Alibaba’s $1.1 bn investment in eBay-like Tokopedia and $.8 bn to Cainiao (see below). Half of the top 10 were in Asia; only three were for US-based companies.

Three Chinese companies stand out with Texas-size robotics-related activity: Midea/Kuka is planning to sell 50-55% of its annual $3 bn output in China by 2020; Siasun’s robots are exported to 30+ countries; and Alibaba is investing $15 billion over five years in internal logistics for their growing e-commerce business.

Alibaba (BABA:NYSE)

Amazon take note: China’s largest smart warehouse is manned by mobile robots moving shelves to picking and packing stations — and they look amazingly similar to Amazon’s Kiva robots.

Alibaba is emulating Amazon in putting robots into the logistics warehouses it operates for sorting, picking and moving applications. Through its investment in logistics company Cainiao, and similar investments in local startups Geek+ and Quicktron, both of which make Kiva-like mobile robots and provide extensive network and traffic management software for e-commerce distribution centers. Cainiao currently executes 57 million deliveries a day. Alibaba, which had owned 47% of Cainiao, has invested a further $807 million to increase its stake to 51%. Alibaba’s goal for Cainiao is to delivery anywhere in China within 24 hours and anywhere in the world within 72.

Warehousing robots aren’t Alibaba’s only play. They are also investing in service robots through their joint venture with SoftBank Robotics and Foxconn and also augmented reality big-data-driven logistics navigation and picking solutions as well as other types of AGVs for towing, moving and sorting pallets, boxed goods and shelves.

In addition to the Cainiao investment, Alibaba also invested $1.1 billion in PT Tokopedia, a large e-Bay-like service covering Indonesia. Overall, Alibaba has committed $15 billion over the next five years to build out a global logistics network.

Midea Group (000333:SHE)


Midea, China’s 4th largest consumer products manufacturer, and the country’s biggest maker of air conditioners, refrigerators and appliances, has a masterplan to revamp itself into China’s leading robot manufacturer.

  • Last year, for around $4.5 billion, they acquired the world’s 4th largest robot manufacturer, Germany-based Kuka AG.
  • At their air conditioner plant, Midea has deployed 800 robots and replaced 24,000 workers in their quest to improve quality and reduce costs.
  • In another factory, Midea engineers have made it so six robots produce and assemble remote control devices every seven seconds with 100% quality.
  • Early this year they set up an alliance with Israel-based advanced motion control and automation systems company Servotronix.
  • Then they invested another $1.5 billion in a new factory in southern China to manufacturer and assemble service and industrial robots (7,000 and 2,000 per year respectively).
  • These robots will be for sale as well as for internal use and the goal is that by 2025, 17,000 industrial robots will be produced at that factory in addition to Kuka’s goals at Kuka’s separate facilities.
  • Kuka plans to sell 50-55% of its annual output ($3 bn+) in China by 2020.
  • Midea is doubling the number of research engineers working on product development and AI. Research projects include robotic bartenders, consumer food processors and industrial-grade food production robots.

Midea’s investments and strategic alliances underscore their ambition to lead in automation and robotics within China and, later, globally.

Siasun Robot & Automation (300024:SHE)

According to The Wall Street Journal, Siasun’s 2016 revenue was $2.02 bn which was 20.47% greater than FY 2015. Forbes rates Siasun as #20 on the Innovative Growth Companies list with a market cap of $5.1 bn and 2,500 employes.

Siasun focuses on four verticals: advanced manufacturing equipment, rail transit automation, autonomous energy equipment and advanced robotics (across all divisions). In addition to fixed and mobile industrial robots, Siasun has a line of clean room robots and a new collaborative robot. They also have an extensive line of mobile robots for material handling, warehouses, restaurants, public spaces and indoor cleaning and security. Online retailer JD.com has teamed up with Siasun to automate JD’s logistic network and JD says that it also plans to develop delivery drones and driverless vehicles.

Qu Daokui, president of Siasun, said the company is looking to invest in robot technology in Europe and the United States, with acquisitions starting from at least $1 billion. “We are interested in companies that have state-of-the-art technologies or have a key presence in the industry chain,” Qu said recently at the 2017 World Robot Conference in Beijing.

Currently, the Shenyang-based company’s industrial robots and other products are exported to more than 30 countries and regions. Moreover, two-thirds of Siasun’s customers are foreign companies. According to China Daily, Siasun robots are at work in Ford and General Motors auto plants in the U.S.

Last year, Siasun teamed up with Israeli companies and universities in a China-Israel robot research institute in Guangzhou where they are jointly working on artificial intelligence which Qu billed as of great importance to robots by giving them “wings”.

Bottom Line

Many critics and pundits warn that the free-flowing incentives China has been giving to effect its 5-year plans and Made in China 2025 program has produced fraud, false figures and unknown results. They worry about overcapacity and that many of the new companies involved in robotics are just in it to get the subsidies and tax breaks.

Nevertheless, the three companies profiled above attest to the fact that China’s overall goal to become a high-tech maker and user of robotics and AI is working… and working BIG. Texas BIG.

Robotic bugs train insects to be helpers

Robots help ants with daily chores so they can be accepted into the colony. Image credit – Dr Bertrand Collignon

by Aisling Irwin

Tiny mobile robots are learning to work with insects in the hope the creatures’ sensitive antennae and ability to squeeze into small spaces can be put to use serving humans.

With a soft electronic whirr, a rather unusual looking ant trundles along behind a column of its arthropod comrades as they march off to fetch some food.

While the little insects begin ferrying tiny globules of sugar back home, their mechanical companion bustles forward to effortlessly pick up the entire container and carry it back to the nest.

It is a dramatic demonstration of how robots can be introduced and accepted into insect societies.

But the research, which is being conducted as part of the EU-funded CyBioSys project, could be an important step towards using robots to subtly control, or work alongside, animals or humans.

‘The idea is to be able to solve (a) problem with a better solution than they (the robots and insects) can produce individually,’ said Dr Bertrand Collignon, who is leading the research at the École Polytechnique Fédérale de Lausanne, in Switzerland.

The robots, which ‘live’ with the ants, pick up signs that food has been discovered through a camera mounted inside the nest. The camera alerts the robots when it detects an increasing numbers of ants are departing – a sign that food has been found.

The robots – reprogrammed off-the-shelf Thymio bots managed by simple Raspberry Pi computers – then use sensors to follow the columns of exiting ants. Once the ants have led their robotic counterparts to their discovery, the robots take over, using their superior muscle power to lug it home.

Dr Collignon described this as a ‘cyber-biological system’, which improves both on the natural order, and on what robots could achieve on their own. By getting ants and robots to collaborate, each community plays to its strengths, he says.

‘The ants are good at exploring the environment very efficiently, with many scouts patrolling the vicinity of the nest at the same time,’ said Dr Collignon, who is a Marie Skłodowska-Curie action fellow. ‘But individual ants are not able to transport large amounts of food and some can get lost between the food and the nest.’

‘By getting ants and robots to collaborate, each community plays to its strengths.’

Dr Bertrand Collignon, École Polytechnique Fédérale de Lausanne, Switzerland

Robots are like pack animals in comparison, carrying an order of magnitude more food than an ant can, and accomplishing in a few minutes what would have taken the ants hours.

Dr Collignon believes it is the first project to consider an insect swarm as a biosensor and then embed in a robot the ability to extract data from the colony.

But he also believes this research could be combined with other work teaching robots to communicate with animals. Instead of relying on top-down instructions — like a shepherd dog herding sheep — this would work by subtly influencing them from a position as one of the group.

As many social insects such as ants and bees can form aggressive colonies that normally do not respond well to outsiders, influencing them from within may offer a new approach.

In a previous EU-funded project, LEURRE, a team pioneered the creation of small mobile robots that could interact with cockroaches and influence their collective behaviour.

When kept in a pen together, cockroaches will gradually gather under the same dark shelter. They achieve this simply by following two rules: stay close to other cockroaches, and head for somewhere dark.

But when the researchers released small robots into the pen programmed with slightly different rules — stay close to other cockroaches but prefer a lighter refuge — in time the cockroaches, along with the robots, gathered in the lighter shelter instead.

Dr Collignon believes that the two types of robotic work – collaboration and communication – could find applications in search and rescue, exploring environments too dangerous or inaccessible for humans. Eventually, small animals could be used to get into restricted environments such as collapsed buildings.

By integrating artificial systems, such as robots, into more natural ones – such as a warehouse full of chickens – it could lead to new solutions to help control animal behaviour on farms. An example might be preventing deadly mass panic attacks amongst intensively reared animals by using robots that can detect the early signs of an impending stampede and diverting one by behaving in a different way.

‘The first step is to be able to track what natural agents are doing and react appropriately to that,’ he said. ‘That’s already a tricky thing. Once you have sensed what nature is doing, you can then interact. The robotic agent can do what it has been designed for and then act on the system.’


More info
CyBioSys

What is an Airspeed Sensor

It measures the speed of the drone relative to the air, by measuring the positive and negative pressure differences around the drone. When purchased, they usually come together with pitot tube and connection cables. It is recommended for advanced users or drones only, as it necessitates an extra layer of control and tuning. Through pitot tube, the pressure is measured and then this is converted to air speed. Air speed varies with the square root of air pressure. The pitot tube, which takes in the air, transmits it to the sensor through rubber tubing. The sensor is connected to flight controller through a 4 wire I2C cable. Air speed of drone is different than its speed relative to ground. When calculating flight time for a certain distance, the ground speed is used. For example, if the aircraft is moving in the air with 200 km/h, into a headwind of 5 km/h, then its ground speed is 195 km/h. This is how fast the shadow of the aircraft moves on the ground. When airspeed is corrected for pressure and temperature, true airspeed is obtained. This is the true speed at which the aircraft moves through the air fluid that surrounds it.

 

Ask, discuss anything about robots and drones in our forums

See our Robot Book

This post was originally written by RoboticMagazine.com and displaying without our permission is not allowed.

The post What is an Airspeed Sensor appeared first on Roboticmagazine.

Aerial manipulator for contact inspection selected for innovation prize

The European project AEROARMS is one of 10 innovations selected to compete for the Innovation Radar Prize in the “Industrial & Enabling Tech” category. AEROARMS is a European project that proposes to develop the first UAV robotic system with multiple arms and advanced manipulation capabilities for industrial inspection and maintenance.

The selected innovation is a torque-free contact device for integration into multi-rotor platforms. This technology was developed by CATEC research center, within the AEROARMS project. It enables drones to perform inspections that require contact, like ultrasonic. This is a major step for drones to not only “see” from the air but also “touch and feel”. The drone presents a tilted-rotor configuration that allows very precise movements and a contact device that decouples and dampens external perturbations (wind, external forces while touching) from the aerial platform.

AEROARMS is an ongoing H2020 project with more than 5.7 million euros budget, participants from five countries and nine partners, including the University of Seville, coordinator of AERAORMS, CATEC, the Technical University of Catalonia, the German DLR Institute of Robotics and Mechatronics and the companies TÜV NORD Systems GmbH and Elektra UAS GmbH, the French Centre National De La Recherche Scientifique, the Italian Consorzio C.R.E.A.T.E, and the Swiss companies ALSTOM Inspection Robotics and Sensima Inspection. The project will finish in 2019.

September 2017 fundings, acquisitions and IPOs

26 different startups were funded to the tune of $507 million in September, up from $369 million in August. Six acquisitions were reported during the month including Deere’s acquisition of California Blue River Technology for $305 million. And Restoration Robotics’ IPO will start being listed on NASDAQ early in October.

Fundings

  • LeddarTech, the Canadian developer of sensors and LiDAR distancing systems for ADAS and other mobile systems, raised $101 million in a Series C funding led by Osram with participation by Delphi, Magneti Marelli, Integrated Device Technology, Fonds de solidarité FTQ, BDC Capital and GO Capital. This round of funding will allow LeddarTech to enhance its ASIC development efforts, expand its R&D team, and accelerate ongoing LiDAR development programs with select Tier-1 automotive customers for rapid market deployment.
  • Innoviz Technologies, the Israeli solid-state LiDAR startup, raised $65 million in a Series B funding. Delphi Automotive PLC and Magna International participated in the round, along with additional new investors including 360 Capital Partners, Glory Ventures, Naver and others. All Series A investors also participated in the round.
  • Roobo, the Chinese startup and manufacturer of the Domgy consumer robot, raised $53 million in a Series B round led by Seven Seas Partners and IFlyTek, a Chinese developer of self-driving technologies, speech recognition for human-machine and human-human communication and related software and chips.
  • JingChi, a Sunnyvale self-driving car vision systems startup, raised $52 million in a seed round. Although the lead investor was Qiming Venture Partners, the company did not disclose the identity of any additional investors in the round.
  • Five AI, a Bristol, UK self-driving technology and ride-sharing startup, raised $35 million  in a Series A funding round led by Lakestar Capital, with Amadeus Capital Partners, Notion Capital and Kindred (which all previously invested in its seed round) also participating.
  • Airobotics, the Israeli autonomous drone platform for the mining, utilities and gas industry, raised $32.5 million in a series C funding round led by BlueRun Ventures. With the funding, Airobotics is starting a new Homeland Security and Defense division, as well as the “Airobotics Safe Cities” initiative, which uses fully automated drones to perform emergency operations in cities.
  • Cambridge Medical Robotics, a UK startup developing a next-generation robotic surgical system closed a Series A funding round of $26 million from Watrium and existing investors Cambridge Innovation Capital, LGT Global Invest, Escala Capital and ABB Technology Ventures.
  • Kinova Robotics,  a Canadian provider of robotics for the disabled, has raised $20 million to transition into three new areas of service robotics: collaborative robots for inspection and pick and place operations, manipulators for mobile platforms, and medical robots for research and therapies. Funding came from four major contributors, including lead investor Fonds Manufacturier Québécois; and KTB Network (South Korea), Foxconn (Taiwan); and BDC Capital (Canada).
  • Humatics, a Cambridge, Mass.-based developer of sensors, software, and control systems that enable robots to work within human environments, raised $18 million in a Series A funding. Fontinalis Partners led the round, and was joined by investors including Airbus Ventures, Lockheed Martin Ventures, Intact Ventures, Tectonic Ventures, Presidio Ventures, Blue Ivy Ventures, Ray Stata, and Andy Youmans.
  • Lighthouse AI, a Silicon Valley startup developing a deep learning, 3D sensing, interactive home assistant, raised $17 million (in May) led by Eclipse, Felicis Ventures, Andy Rubin’s Playground Ventures, SignalFire and StartX. Their new home security device can accurately distinguish between adults, children, pets and objects, known and unknown faces, and actions and report upon and play back based on what it finds.
  • Tonbo Imaging, an Indian defense vision systems startup, raised $17 million in a Series B funding round led by Walden Riverwood Ventures with Artiman Ventures, Edelweiss, and Qualcomm Ventures.
  • Drive.AI, a Silicon Valley self-driving startup, raised another $15 million (after their $50 million Series B round earlier this year) from Grab, an Uber rival Asian on-demand transportation and mobile payments platform, and unnamed others. Drive CEO Sameep Tandon said: “We look at Singapore as a technological juggernaut. When innovations happen in the region, basically they start in Singapore and then move out to other places within the region, whether it’s Indonesia, Vietnam or China. What’s also really interesting to us about Singapore is they have this sort of existential problem here – for them autonomous driving is not a matter of ‘if,’ it’s a matter of ‘when.’”
  • Ushr Inc., a Livonia, Mich.-based startup developing high-definition mapping technology and software for autonomous and semi-autonomous vehicles, raised $10 million in a Series A funding round led by Forte Ventures and including EnerTech Capital, Emerald Technology Ventures, and GM Ventures.
  • Agrible, an Illinois startup offering a suite of software tools for connected farmers, raised $9.7 million of a $15.7 million Series B round of funding led by Maumee Ventures, iSelect Fund, and existing investors Flyover Capital, Archer Daniels Midland, and Serra Ventures.
  • Bonsai AI, a Berkeley, CA AI startup, raised $7.6 million (in May) in a Series A round led by Microsoft Ventures and NEA, with participation from Samsung, Siemens, and ABB Technology Ventures.
  • Metawave, a Palo Alto self-driving perception spin-off from PARC, raised $7 million in seed funding. Backers included Khosla Ventures, Motus Ventures, and Thyra Global Management.
  • Ori Systems, a Boston startup with a novel interior space robotic furniture system, raised $6 million in a Series A funding round led by Khosla Ventures.
  • Specim Spectral Imaging, the Finnish company providing imaging systems to Zen Robotics for waste sorting and management, raised $4.2 million from Bocap SME Achievers Fund II Ky.
  • OpenSpace, a San Francisco machine vision startup, raised $3 million in seed funding. Lux Capital led the round, and was joined by investors includingFoundation Capital, National Science Foundation, the Box Group, AngelList, Goldcrest, Sterling Capital and Comet Labs.
  • Furhat Robotics, the Swedish startup developing social robots, raised $2.5 million in a seed funding round from Balderton Capital and LocalGlobe. The company is currently working with Swedish public services as well as companies like Honda, Intel, Merck, Toyota, and KPMG to develop apps on the platform, eg: A Swedish employment agency is using the conversational robot to prepare people for job interviews and to train teachers; Honda is using Furhat to develop a conversational tool for the elderly in a smart home setting; KPMG is designing a Furhat-enabled financial advisor interface. A recent Forbes article reports that both Disney and Intel are customers of this 50-person startup. Watch this fascinating Bloomberg video:

  • Reactive Robotics, a Munich startup developing rehab robotics for hospitals with ICUs for mechanically ventilated, neurological or trauma patients, raised an amount estimated to be around $2.5 million led by MTIP MedTech Innovation Partners AG, High-Tech Gründerfonds, Bayern Kapital, TQ-Group, and Dr. Doll Holding GmbH. Reactive Robotics said it expects to deliver its 1st clinical test product by the 1st quarter of 2018.
  • Betterview, a San Francisco-based software startup that can analyze detailed aerial footage captured by drones, raised $2 million.  Compound Venture Capital led the round, and was joined by investors Maiden Re, 645 Ventures, Arab Angel, Winklevoss Capital, Chestnut Street Ventures, Pierre Valade, Haystackand MetaProp.
  • Sea Machines Robotics, a Boston startup developing unmanned marine systems, raised $1.5 million (in May) in a round led by Connecticut-based LaunchCapital with participation from Cambridge-based venture capital firm Accomplice, Techstars, LDV Capital, and the Geekdom Fund. Sea Machines provides software and hardware to turn existing boats into autonomous vehicles.

Fundings (amount unknown)

  • SharkNinja, a home products distributor, raised an undisclosed sum from CDH investments, a large private equity fund, who said they purchased “a significant equity interest.” No amounts were disclosed. SharkNinja launched a Roomba-like robot vacuum to their line of products — at half the price of iRobot’s Roomba. Analysts are saying that SharkNinja “is a credible threat to iRobot” given its knack for marketing, as well as engineering high-quality products at value price points — two strengths that helped it successfully take market share from Dyson in recent years in the upright-vacuum market.
  • Acutronic Robotics, a Swiss company providing multi-axis motion simulators, has received Series A funding from the Sony Innovation Fund. No financial details were given. Funds will be used to enable Acutronic to accelerate the development of their Hardware Robot Operating System (H-ROS), to compete with ROS-I and legacy software from robot manufacturers. “H-ROS aims to change the landscape of robotics by creating an ecosystem where hardware components can be reused among different robots, regardless of the original manufacturer. We strongly believe that the future of robotics will be about modular robots that can be easily repaired and reconfigured. H-ROS aims to shape this future.”
  • Ocean Aero, a San Diego unmanned marine systems startup, raised an undisclosed amount from Lockheed Martin Ventures. “Ocean Aero represents the next generation of environmentally powered, autonomous ocean systems. Our investment will allow us to better respond to customers’ maritime needs with technology solutions for a diverse set of missions,” said Chris Moran, ED and GM of Lockheed Martin Ventures.

Acquisitions

  • John Deere, the farm equipment manufacturer, acquired Blue River Technology, a Silicon Valley AI and farm equipment startup for $305 million. Blue River has honed their See & Spray and Sense & Decide devices to analyze every plant in a field and apply herbicides only to weeds and overly crowded plants needing thinning thereby dramatically reducing the amount of chemicals used. Their robots are towed behind a tractor similar to conventional spraying equipment but Blue River’s towed implements have onboard cameras that use machine-learning software to distinguish between crops and weeds, and automated sprayers to target and spray the unwanted plants. Further, Blue River devices have a second set of cameras to automatically check its work as it operates and to gather data on the tens of thousands of plants in each field so that its analytics software can continue improving the devices and the process. Daniel Theobald, Founder and Chief Innovation Officer at Vecna, a Cambridge, MA provider of mobile robots, said:“It’s a smart move by Deere. They realize the time window in which ag industry execs will continue to buy dumb equipment is rapidly coming to a close. The race to automate is on and traditional equipment manufacturers who don’t embrace automation will face extinction. Agriculture is ripe for the benefits that robotics has to offer. Automation allows farmers to decrease water use, reduce the use of pesticides and other methods that are no longer sustainable, and helps solve ever worsening labor shortages.”
  • OMRON, the Japanese company that acquired robot maker Adept Technology last year, has just acquired Microscan Systems, the Renton, WA-based barcode reading and machine vision systems company, for $157 million. Microscan was a wholly owned subsidiary of UK-based Spectris Plc.
  • Neato Robotics, the California maker of home robot vacuums, was acquired by German appliance maker Vorwerk. Financial terms were not disclosed. Vorwerk invested in Neato back in 2010 but now has completely acquired Neato outright and fully owns its business and technology, which could help the international operation expand into the growing robotic vacuum industry.
  • Siemens, the German conglomerate, acquired Tass International for an undisclosed amount. Tass develops software that simulates traffic scenarios, validates autonomous driving and replicates ADAS (advanced driver assistance systems) in crash testing. It has 200 employees and annual revenue of around $32 million.
  • Precision Planting, a developer and reseller of mechanical, monitoring and control systems for precision ag applications, was acquired by AGCO, a global manufacturer and distributor of ag equipment, for an undisclosed amount. Precision Planting was a subsidiary of The Climate Corporation (a subsidiary of Monsanto).
  • Nabors Industries, an oil and gas drilling company, has acquired Robotic Drilling Systems, a Norwegian provider of a system for unmanned drill-floor operations. No figures were disclosed regarding the transaction.

IPOs

  • Restoration Robotics, a Silicon Valley FDA-approved robotic hair transplant startup, has filed to be listed on NASDAQ under the symbol HAIR. They plan to offer 3.125 million shares priced at around $8 per share — a $25 million IPO. It is expected to price during the week of October 9, 2017. If that price holds, it would establish a market value of $225 million for the company.

RoboBusiness 2017: What’s cooking in robotics?

Mike Toscano, the former president of the Association for Unmanned Vehicle Systems International, emphatically declared at the September RobotLab forum that “anyone who claims to know the future of the [robotics] industry is lying, I mean no one could’ve predicted the computing mobile revolution.” These words acted as a guiding principle when walking around RoboBusiness in Silicon Valley last week.

The many keynotes, pitches and exhibits in the Santa Clara Convention Center had the buzz of an industry racing towards mass adoption, similar to the early days of personal computing. The inflection point in the invention that changed the world, the PC, was 1995. During that year, Sun Microsystems released Java to developers with promise of “write once, publish anywhere,” followed weeks later by Microsoft’s consumer software package, Windows ’95. Greater accessibility led to full ubiquity and applications unthinkable by the original engineers. In many ways, the robot market is standing a few years before its own watershed moment.

In my last post, I highlighted mechanical musicians and painters, this week it is time to see what is cooking, literally, in robotics. Next year, startup Moley plans to introduce the “first fully-automated and integrated intelligent cooking robot,” priced under $100,000. It already has a slick video that is reminiscent of Lily’s Robotics’ rise to the headlines; needless to say Moley has created quite a stir in the culinary community.

Austin Gresham, executive chef at The Kitchen by Wolfgang Puck is very skeptical, “Professional chefs have to improvise constantly as they prepare dishes. If a recipe says to bake a potato for 25 minutes and the potatoes are more or less dense than the previous batch, then cooking times will vary. I would challenge any machine to make as good a mashed potato (from scratch).” Gresham’s challenge is really the crux of the matter, creativity is driven by human’s desire for food, without taste could a robot chef have the intuition to improvise?

Acting as a judge of the RoboBusiness Pitch Fire Competition, I met entrepreneurs undiscouraged by the market challenges ahead. In addition, throughout my Valley visit, I encountered five startups building commercial and consumer culinary applications. Any time this happens within such a short timespan, I stop and take notice. Automated restaurants seem to be a growing trend across the nation with a handful of upstarts on both coasts. Eatsa is a chain of quinoa-salad restaurants sans cashiers and servers. Customers order via mobile devices or on-site kiosks, picking up their ready dishes through an automated floor-to-ceiling lockbox fixture. However, behind the wall Eatsa has hourly workers manually preparing the salad bowls. Cafe X in San Francisco offers a completely automated experience with a robot-arm barista preparing, brewing and serving espressos, cappuccinos, and Americanos. After raising $5 million from venture investors, Cafe X plans to expand with robot kiosks throughout the city. Probably the most end-to-end automated restaurant concept I visited can be found tucked away on Berkeley University’s Global Campus called BBox by Nourish. BBox is currently running a trial on campus and planning to open its first store next year to conquer the multi-billion dollar breakfast market with egg sandwiches and gourmet coffee (see video below).

According to Nourish’s CEO Greg Becker, BBox will “reengineer the food ecosystem, from farm to mouth.” Henry Hu, Cafe X’s founder, also aims to revolutionize “the supply chain, recipes, maintenance, and customer support.” To date, the most successful robotic concept is Zume Pizza. Founder Julia Collins made headlines last year with her groundbreaking spin on the traditional pizzeria. Today she is taking on Dominos dollar for dollar in the San Francisco area, delivering pies in under 22 minutes. Collins, a former Chief Financial Officer of a Mexican restaurant chain, challenges the food industry, “Why don’t we just re-write the rules— forget about everything we learned about running a restaurant?” Already, Zume is serving hundreds of satisfied customers daily, proving at least with pizza it is possible to innovate.

“We realized we could automate more of the unsafe repetitive tasks of operating a kitchen using flexible, dynamic robots,” explains Collins, who currently employees over 50 human workers that do everything from software engineering to supervising the robots to delivering the pizza. “The humans that work at Zume are making dough from scratch, working with farmers to source products, recipe development—more collaborative, creative human tasks. [We have] lower rent costs because we don’t have a storefront; delivery only and lower labor costs. We reinvest those savings into locally sourced, responsibly farmed food.” Collins also boasts that her human workforce has access to free vision, dental, and health insurance due to the cost savings.

Even Shake Shack could have competition very soon as Google Ventures-backed Momentum Machines is launching an epicurean robot bistro in San Francisco’s chic SoMa district later next year. The machine that has been clocked at 400 burgers an hour, guarantees “to slice toppings, grill a patty, assemble, and bag the burger without any help from humans,” at prices that “everyone can afford.” Momentum’s proposition prompted former McDonald’s CEO Ed Rensi to controversially state that “it’s cheaper to buy a $35,000 robotic arm than it is to hire an employee who’s inefficient making $15 an hour bagging french fries.” Comments like Rensi’s do not further the industry, in fact it probably led to the controversy last month with the launch of Bodega, an automated convenience store that even enraged Lin-Manuel Miranda below.

The bad press was multiplied further by Elizabeth Segran’s article in Fast Company, which read, “the major downside to this concept — should it take off — is that it would put a lot of mom-and-pop stores out of business.” Founder Paul McDonald responded on Medium, “Rather than take away jobs, we hope Bodega will help create them. We see a future where anyone can own and operate a Bodega — delivering relevant items and a great retail experience to places no corner store would ever open.” While Bodega is not exactly a robotic concept, it is similar to the automated marketplace of AmazonGo with 10 computer vision sensors tracking the consumer and inventory management via a mobile checkout app. “We’re shrinking the store and putting it in a box,” said McDonald. The founder has publicly declared war on 7-Eleven’s 5,000 stores, in addition to the 4 million vending machines across the US. Realizing the pressures to innovate, last year 7-Eleven made history with the first drone Slurpee delivery. “Drone delivery is the ultimate convenience for our customers and these efforts create enormous opportunities to redefine convenience,” said Jesus H. Delgado-Jenkins, 7-Eleven EVP and Chief Merchandising Officer. “This delivery marks the first time a retailer has worked with a drone delivery company to transport immediate consumables from store to home. In the future, we plan to make the entire assortment in our stores available for delivery to customers in minutes. Our customers have demanding schedules, are on-the-go 24/7 and turn to us to help navigate the challenges of their daily lives. We look forward to working with Flirtey to deliver to our customers exactly what they need, whenever and wherever they need it.”

As mom & pop stores compete for market share, one wonders with more Kitchen OS concepts if home cooked meals will join the list of outdated cultural trends. Serenti Kitchen in San Francisco plans to bring the Keurig pod revolution to food with its proprietary machine that includes prepared culinary recipe pods that are dropped into a bowl and whipped to perfection by a robotic arm (see above). Serenti Founder Tim Chen was featured last year at the Smart Kitchen Summit, which reconvenes later this month in Seattle. Chen said, “We’re building something that’s quite hard, mechanically, so it’s more from a vision where we wanted to initially develop a machine that could cook, and make cooking easier and automate cooking for the home.” Initially Chen plans to target business catering, “In the near term, we need to focus on placing these machines where there’s the highest amount of density, which is right in the offices,” but long-term Serenti plans to join the appliance counter. Chen explained his inspiration, “Our Mom is a great cook, so they’ve watched her execute the meals. Then realized a lot of it is repetitive, and what recipes are, is essentially just a machine language.” Chen’s observations are shared by many in the IoT and culinary space, as this year’s finalists in the Smart Kitchen Summit include more robotic of inventions, such as Crepe Robot that automatically dispense, cook and flavors France’s favorite snack and GammaChef, a robotic appliance that promises like Serenti to whip up anything in a bowl. Clearly, these inventions will eventually lead to a redesign of the physical home kitchen space that is already crowded with appliances. Some innovators are even using robotic arms tucked away in cabinets and specialized drawers, ovens and refrigeration units that communicate seamlessly to serve up dinner.

The automated kitchen illuminated by Moley and others might be coming sooner than anyone expects; then again it could be a rotten egg. In almost every Sci-Fi movie and television show the kitchen is reduced to a replicator that synthesizes food to the wishes of the user. Three years ago, it was rumored that food-powerhouse Nestle was working on a machine that could produce nutritional supplements on demand, code name Iron Man. While Iron Man has yet to be released to the public, it does illustrate the convergence of 3D printing, robotics and kitchen appliances. While the Consumer Electronics Show is still months away, my appetite has just been whetted for more automated culinary treats, stay tuned!

Global robot growth causing shortages in critical components

Two reputable research resources are reporting that the robotics industry is growing more rapidly than expected. BCG (Boston Consulting Group) is conservatively projecting that the market will reach $87 billion by 2025; Tractica, incorporating the robotic and AI elements of the emerging self-driving industry, is forecasting the market will reach $237 billion by 2022.

Both research firms acknowledge that yesterday’s robots — which were blind, big, dangerous and difficult to program and maintain — are being replaced and supplemented with newer, more capable ones. Today’s new – and future robots will – have voice and language recognition, access to super-fast communications, data and libraries of algorithms, learning capability, mobility, portability and dexterity. These new precision robots can sort and fill prescriptions, pick and pack warehouse orders, sort, inspect, process and handle fruits and vegetables, plus a myriad of other industrial and non-industrial tasks, most faster than humans, yet all the while working safely along side them.

Boston Consulting Group (BCG)

Gaining Robotic Advantage, June 2017, 13 pages, free

BCG suggests that business executives be aware of ways robots are changing the global business landscape and think and act now. They see robotics-fueled changes coming in retail, logistics, transportation healthcare, food processing, mining and agriculture.

BCG cites the following drivers:

  • Private investment in the robotic space has continued to amaze with exponential year-over-year funding curves and sensational billion dollar acquisitions.
  • Prices continue to fall on robots, sensors, CPUs and communications while capabilities continue to increase.
  • Robot programming is being transformed by easier interfaces, GUIs and ROS.
  • The prospect of a self-driving vehicles industry disrupting transportation is propelling a talent grab and strategic acquisitions by competing international players with deep pockets.
  • 40% of robotic startups have been in the consumer sector and will soon augment humans in high-touch fields such as health and elder care.

 BCG also cites the following example as an example of paying close attention to gain advantage:

“Amazon gained a first-mover advantage in 2012 when it bought Kiva Systems, which makes robots for warehouses. Once a Kiva customer, Amazon acquired the robot maker to improve the productivity and margins of its network of warehouses and fulfillment centers. The move helped Amazon maintain its low costs and expand its rapid delivery capabilities. It took five years for a Kiva alternative to hit the market. By then, Amazon had a jump on its rivals and had developed an experienced robotics team, giving the company a sustainable edge.”

Tractica

Robotics Market Forecast – June 2017, 26 pages, $4,200
Drones for Commercial Applications – June 2017, 196 pages, $4,200
AI for Automotive Applications – May 2017, 63 pages, $4,200
Consumer Robotics – May 2017, 130 pages, $4,200

The key story is that industrial robotics, the traditional pillar of the robotics market, dominated by Japanese and European robotics manufacturers, has given way to non-industrial robot categories like personal assistant robots, UAVs, and autonomous vehicles, with the epicenter shifting toward Silicon Valley, which is now becoming a hotbed for artificial intelligence (AI), a set of technologies that are, in turn, driving a lot of the most significant advancements in robotics. Consequently, Tractica forecasts that the global robotics market will grow rapidly between 2016 and 2022, with revenue from unit sales of industrial and non-industrial robots rising from $31 billion in 2016 to $237.3 billion by 2022.  The market intelligence firm anticipates that most of this growth will be driven by non-industrial robots.

Tractica is headquartered in Boulder and analyzes global market trends and applications for robotics and related automation technologies within consumer, enterprise, and industrial marketplaces and related industries.

General Research Reports

  • Global autonomous mobile robots marketJune 2017, 95 pages, TechNavio, $2,500
    TechNavio forecasts that the global autonomous mobile robots market will grow at a CAGR of more than 14% through 2021.
  • Global underwater exploration robotsJune 2017, 70 pages, TechNavio, $3,500
    TechNavio forecasts that the global underwater exploration robots market will grow at a CAGR of 13.92 % during the period 2017-2021.
  • Household vacuum cleaners market, March 2017, 134 pages, Global Market Insights, $4,500
    Global Market Insights forecasts that household vacuum cleaners market size will surpass $17.5 billion by 2024 and global shipments are estimated to exceed 130 million units by 2024, albeit at a low 3.0% CAGR. Robotic vacuums show a slightly higher growth CAGR.
  • Global unmanned surface vehicle market, June 2017, Value Market Research, $3,950
    Value Market Research analyzed drivers (security and mapping) versus restraints such as AUVs and ROVs and made their forecasts for the period 2017-2023.
  • Innovations in Robotics, Sensor Platforms, Block Chain, and Artificial Intelligence for Homeland Security, May 2017, Frost & Sullivan, $6,950
    This Frost & Sullivan report covers recent developments such as co-bots for surveillance applications, airborne sensor platforms for border security, blockchain tech, AI as first responder, and tech for detecting nuclear threats.
  • Top technologies in advanced manufacturing and automation, April 2017, Frost & Sullivan, $4,950
    This Frost & Sullivan report focuses on exoskeletons, metal and nano 3D printing, co-bots and agile robots – all of which are in the top 10 technologies covered.
  • Mobile robotics market, December 2016, 110 pages, Zion Market Research, $4,199
    Global mobile robotics market will reach $18.8 billion by end of 2021, growing at a CAGR of slightly above 13.0% between 2017 and 2021.
  • Unmanned surface vehicle (USV) market, May 2017, MarketsandMarkets, $5,650
    MarketsandMarkets forecasts the unmanned surface vehicle (USV) market to grow from $470.1 Million in 2017 to $938.5 Million by 2022, at a CAGR of 14.83%.
  • Military/Civil UAS markets, May 2017, 608 pages, Teal Group
    The Teal Group’s 2016 world military market study estimates that UAV production will soar from current worldwide UAV production of $2.8 billion annually in 2016 to $9.4 billion in 2025, a 15.4% CAGR and that civil UAS production will soar from $2.6 billion worldwide in 2016 to $10.9 billion in 2025, a 15.4% CAGR.

Agricultural Research Reports

  • Global agricultural robots market, May 2017, 70 pages, TechNavio, $2,500
    Forecasts the global agricultural robots market will grow steadily at a CAGR of close to 18% through 2021.
  • Agriculture robots market, June 2017, TMR Research, $3,716
    Robots are poised to replace agricultural hands. They can pluck fruits, sow and reap crops, and milk cows. They carry out the tasks much faster and with a great degree of accuracy. This coupled with mandates on higher minimum pay being levied in most countries, have spelt good news for the global market for agriculture robots.
  • Agricultural Robots, December 2016, 225 pages, Tractica, $4,200
    Forecasts that shipments of agricultural robots will increase from 32,000 units in 2016 to 594,000 units annually in 2024 and that the market is expected to reach $74.1 billion in annual revenue by 2024. Report, done in conjunction with The Robot Report, profiles over 165 companies involved in developing robotics for the industry.

Bottom Line

The disparity between the projections of these research reports is wide but the CAGRs are mostly all double digit. It is easy to conclude as BCG did – that the robotics industry is growing faster than expected

Page 3 of 3
1 2 3