Archive 02.12.2022

Page 5 of 64
1 3 4 5 6 7 64

Tiny swimming robots can restructure materials on a microscopic level

Controlling microscopic processes is inherently challenging. The everyday tools we use to manipulate matter on the macroscale can't simply be shrunk down to the size of cell, and even if they could, the physical forces they rely on work differently when their targets are measured in nanometers.

Lightweight robotic leg prosthesis replicates the biomechanics of the knee, ankle and toe joint

The Utah Bionic Leg, a motorized prosthetic for lower-limb amputees developed by University of Utah mechanical engineering associate professor Tommaso Lenzi and his students in the HGN Lab, is on the cover of the newest issue of Science Robotics.

The Utah Bionic Leg: A motorized prosthetic for lower-limb amputees

The Utah Bionic Leg is a motorized prosthetic for lower-limb amputees developed by University of Utah mechanical engineering associate professor Tommaso Lenzi and his students in the HGN Lab.

Lenzi’s Utah Bionic Leg uses motors, processors, and advanced artificial intelligence that all work together to give amputees more power to walk, stand-up, sit-down, and ascend and descend stairs and ramps. The extra power from the prosthesis makes these activities easier and less stressful for amputees, who normally need to over-use their upper body and intact leg to compensate for the lack of assistance from their prescribed prosthetics. The Utah Bionic Leg will help people with amputations, particularly elderly individuals, to walk much longer and attain new levels of mobility.

“If you walk faster, it will walk faster for you and give you more energy. Or it adapts automatically to the height of the steps in a staircase. Or it can help you cross over obstacles,” Lenzi says.

The Utah Bionic Leg uses custom-designed force and torque sensors as well as accelerometers and gyroscopes to help determine the leg’s position in space. Those sensors are connected to a computer processor that translates the sensor inputs into movements of the prosthetic joints. Based on that real-time data, the leg provides power to the motors in the joints to assist in walking, standing up, walking up and down stairs, or maneuvering around obstacles. The leg’s “smart transmission system” connects the electrical motors to the robotic joints of the prosthetic. This optimized system automatically adapts the joint behaviors for each activity, like shifting gears on a bike.

Finally, in addition to the robotic knee joint and robotic ankle joint, the Utah Bionic Leg has a robotic toe joint to provide more stability and comfort while walking. The sensors, processors, motors, transmission system, and robotic joints enable users to control the prosthetic intuitively and continuously, as if it was an intact biological leg.

Details of the leg’s newest technologies are described in a paper published in the journal. The paper was authored by University of Utah mechanical engineering graduate students Minh Tran, Lukas Grabert, Sarah Hood and Lenzi. You can read the paper here.

Lenzi and the university recently forged a new partnership with the worldwide leader in the prosthetics industry, Ottobock, to license the technology behind the Utah Bionic Leg and bring it to individuals with lower-limb amputations.



This article was originally published here.

Soft robots make virtual reality gloves feel more real

Soft robots, or those made with materials like rubber, gels and cloth, have advantages over their harder, heavier counterparts, especially when it comes to tasks that require direct human interaction. Robots that could safely and gently help people with limited mobility grocery shop, prepare meals, get dressed, or even walk would undoubtedly be life-changing.

San Francisco will allow police to deploy robots that kill

Supervisors in San Francisco voted Tuesday to give city police the ability to use potentially lethal, remote-controlled robots in emergency situations—following an emotionally charged debate that reflected divisions on the politically liberal board over support for law enforcement.

Making ‘transport’ robots smarter

Imagine a team of humans and robots working together to process online orders—real-life workers strategically positioned among their automated coworkers who are moving intelligently back and forth in a warehouse space, picking items for shipping to the customer. This could become a reality sooner than later, thanks to researchers at the University of Missouri, who are working to speed up the online delivery process by developing a software model designed to make "transport" robots smarter.

When it comes to delivery drones, the government is selling us a pipe dream. Experts explain the real costs

In early November, the Commonwealth Department of Infrastructure invited public comment on proposed Australia-wide "drone delivery guidelines" it has been quietly developing with industry stakeholders. A slick new website—drones.gov.au—boasts of the supposed benefits of delivery drones. It claims they will create jobs, provide cost-efficiency and be environmentally sustainable.

New Ideas, Collaboration Help Brenton Drive Four Major Product Handling Upgrades to KW Container

This cell included four robots picking lids and packing them into one of four SKUs. This cell, encapsulated in a small footprint, also included an auto adjustable case sealer to accommodate the four different SKU boxes, a palletizer and stretch wrapper.
Page 5 of 64
1 3 4 5 6 7 64