Archive 20.04.2023

Page 3 of 6
1 2 3 4 5 6

Built to bounce back: Robotics researchers design drone to cope with collisions

Search and rescue efforts following disasters like the massive earthquakes in Turkey and Syria are a race against time. Emergency response teams need to quickly identify voids or spaces in building rubble where survivors might be trapped, and before natural gas leaks, water main flooding or shifting concrete slabs take their toll.

Ground reaction force and moment estimation through EMG sensing using long short-term memory network

Imagine that by only attaching a number of electromyography (EMG) sensors to your legs, your motion in the future several seconds can be predicted. Such a way of predicting motion via muscle states is an alternative to the mainstream visual cue-based motion prediction, which heavily relies on multi-view cameras to construct time-series posture. However, there is still a gap between muscle states and future movements.

Drones navigate unseen environments with liquid neural networks

In the vast, expansive skies where birds once ruled supreme, a new crop of aviators is taking flight. These pioneers of the air are not living creatures, but rather a product of deliberate innovation: drones. But these aren't your typical flying bots, humming around like mechanical bees. Rather, they're avian-inspired marvels that soar through the sky, guided by liquid neural networks to navigate ever-changing and unseen environments with precision and ease.

The first 3D-printed biodegradable seed robot, able to change shape in response to humidity

A robot with the shape of a seed and the ability to explore the soil based on humidity changes has been developed. It is made of biodegradable materials and able to move within the surrounding environment without requiring batteries or other external sources of energy.

[UPDATE] A list of resources, articles, and opinion pieces relating to large language models & robotics

A black keyboard at the bottom of the picture has an open book on it, with red words in labels floating on top, with a letter A balanced on top of them. The perspective makes the composition form a kind of triangle from the keyboard to the capital A. The AI filter makes it look like a messy, with a kind of cartoon style.Teresa Berndtsson / Better Images of AI / Letter Word Text Taxonomy / Licenced by CC-BY 4.0.

We’ve collected some of the articles, opinion pieces, videos and resources relating to large language models (LLMs). Some of these links also cover other generative models. We will periodically update this list to add any further resources of interest. This article represents the third in the series. (The previous versions are here: v1 | v2.)

What LLMs are and how they work

Journal, conference, arXiv, and other articles

Newspaper, magazine, University website, and blogpost articles

Reports

Podcasts and video discussions

Focus on LLMs and education

Relating to art and other creative processes

Pertaining to robotics

Misinformation, fake news and the impact on journalism

Regulation and policy

Researchers develop transient bio-inspired gliders from potato starch and wood waste

Their task is to monitor the condition of ecosystems, for instance in the forest floor—and crumble to dust when their work is done: bio-gliders modeled on the Java cucumber, which sails its seeds dozens of meters through the air. Empa researchers have developed these sustainable flying sensors from potato starch and wood waste.

A neural coordination strategy for attachment and detachment of a climbing robot inspired by gecko locomotion

A research article by scientists at the Nanjing University of Aeronautics and Astronautics developed a neural control algorithm to coordinate the adhesive toes and limbs of a climbing robot. The new research article, published in the journal Cyborg and Bionic Systems, provided a novel hybrid-driven climbing robot and introduced a neural control method based on CPG (Central Pattern Generator) for coordinating between adhesion and motion.

Scientists propose efficient kinematic calibration method for articulated robots

Differential geometry has been employed in previous studies to depict the finite and instantaneous motions of rigid bodies. The product of exponential (POE) formula based on differential geometry has been developed to describe the kinematics of articulated robots. This model can efficiently avoid model singularities and improve the robustness of parameter identification, compared with traditional methods based on Denavit-Hartenberg conventions.
Page 3 of 6
1 2 3 4 5 6