Page 5 of 5
1 3 4 5

Uber regrouping after Levandowski firing

Source: Uber

Uber, the global ride-sharing transportation company, has named two replacements to recover from the recent firing of Anthony Levandowski who headed their Advanced Technologies Group, their OTTO trucking unit, and their self-driving team. Levandowski was fired May 30th.

Eric Meyhofer

Meyhofer, who before coming to Uber was the co-founder of Carnegie Robotics and a CMU robotics professor, was also part of the group that came to Uber from CMU (see below). He has now been named to head Uber’s Advanced Technologies Group (ATG) self-driving group and will report directly to Uber CEO Travis Kalanick.

The ATG group is charged with developing the self-driving technologies of mapping, perception, safety, data collection and learning, and self-driving for cars and trucks.

Sensors that determine distances are integral to the process. Elon Musk said recently that LiDAR isn’t needed because cameras, sensors, software and high-speed GPUs can do the same tricks at a fraction of the cost. Levandowski favored LiDARs, particularly newly developed solid state LiDAR technologies.

Anthony Levandowski

Levandowski, the previous head of the ATG, joined Google to work with Sebastian Thrun on Google Street View, started a mobile mapping company that experimented with LiDAR technology and another to build a self-driving LiDAR-using car (a Prius). Google acquired both companies including their IP. In 2016 Levandowski left Google to found Otto, a company making self-driving kits to retrofit semi-trailer trucks. Just as the kit was launched, Uber acquired Otto and Levandowski became the head of Uber’s driverless car operation in addition to continuing his work at Otto.

The Levandowski case, which caused Uber to fire him, revolves around the intellectual property and particularly the LiDAR-related technologies that Google’s and Uber’s self-driving plans revolve around. Getting the cost of perception down to a reasonable level has been part of the bigger challenge of self-driving technology and LiDAR technology is integral to that plan.

Google’s Waymo self-driving unit is implying in their suit that in return for bringing Google’s IP to Uber, Uber gave Levandowski $250 million in stock grants. Uber has called Waymo’s claims baseless and an attempt to slow down a competitor.

Waymo also claims that Uber has a history of “stealing” technology and includes the time in 2015 when Uber hired away 50+ of the Carnegie Mellon University robotics team – a move that cost Uber a reported $5 billion and created havoc at CMU and the National Robotics Engineering Centre (NREC) which lost 1/3 of their staff to Uber. The move was preceded by establishing a strategic partnership with CMU to work together on self-driving technologies. Four months later, Uber hired the 50.

The Daily Mail headlines said:

Carnegie Mellon left decimated after Uber poaches 40 top-rated robotic researchers to help them develop self-driving cars

  • Carnegie Mellon ‘in crisis’ after mass defection of scientists to Uber
  • Uber hope their fleet of taxis will not require drivers in the future
  • Used $5 billion from investors to poach at least 40 from the National Robotics Engineering Center
  • Uber took six principal investigators and 34 engineers

Brian Zajac

Zajac has been on Uber’s self-driving team since 2015 after stints with Shell and the U.S. Army. Now he becomes the new chief of hardware development and reports to Meyhofer.

David Morris, writing for Fortune, wrote:

“Zajac will now bear a great deal of responsibility for cracking the driverless car problem, which Uber CEO Travis Kalanick has described as “existential” to the company. Uber loses huge amounts of money, and many observers think eliminating the cost of drivers is its only realistic path to profitability.”

Bottom line:

Uber has research teams in Silicon Valley, Toronto and Pittsburgh all working to perfect Level 5 autonomous driving capabilities before any of their competitors are able to duplicate the process. Google, Baidu, Yandex, Didi Chuxing, a few of the Tier 1 component makers, and many others including all the major car companies are racing forward with the same intentions. Levandowski’s firing caused a big gap in Uber’s self-driving project management and fear amongst their investors. Uber hopes that these two changes, Meyhofer as overall head and Zajac as hardware chief, will quell the fears that Uber is losing their momentum.

Finally! Google sells Boston Dynamics to SoftBank

Spotmini by Boston Dynamics. Source: Boston Dynamics/YouTube

In a long-awaited transaction, The New York Times Dealbook announced that SoftBank was buying Boston Dynamics from Alphabet (Google). Also included in the deal is the Japanese startup Schaft. Acquisition details were not disclosed.

Both Boston Dynamics and Schaft were acquired by Google when Andy Rubin was developing Google’s robot group through a series of acquisitions. Both companies have continued to develop innovative mobile robots. And both have been on Google’s for sale list.

Boston Dynamics, a DARPA and DoD-funded 25 year old company, designed two and four-legged robots for the military. Videos of BD’s robots WildCat, Big Dog, Cheetah, SpotMini (shown above getting into an elevator) and Handle, have been YouTube hits for years. Handle, BD’s most recent is a two-wheeled, four-legged hybrid robot that can stand, walk, hop, run and roll at up to 9 MPH.

Schaft, a Japanese startup/participant in the DARPA Robotic Challenge, recently unveiled a two-legged robot that climbed stairs, can carry 125 pounds of payload, move in tight spaces and keep its balance throughout.

SoftBank, through another acquisition (of French Aldabaran, the maker of the Nao and Romeo robots), and in a joint venture with Foxconn and Alibaba, has developed and marketed thousands of Pepper robots. Pepper is a cute, humanoid, mobile robot being marketed and used as a guide and sales assistant. The addition of Boston Dynamics and Schaft to the SoftBank stable add talent and technology to their growing robotics efforts, particularly the Tokyo-based Schaft.

Today, there are many issues we still cannot solve by ourselves with human capabilities. Smart robotics are going to be a key driver of the next stage of the information revolution,” said Masayoshi Son, chairman and chief executive of SoftBank.

China’s strategic plan for a robotic future is working: 500+ Chinese robot companies

In 2015, after much research, I wrote about China having 194 robot companies and used screen shots of The Robot Report’s Global Map to show where they were and a chart to show their makeup. We’ve just concluded another research project and have added hundreds of new Chinese companies to the database and global map.

Why is China so focused on robots?

China installed 90,000 robots in 2016, 1/3 of the world’s total and a 30% increase over 2015. Why?

Simply said, China has three drivers helping them move toward country-wide adoption of robotics: scale, growth momentum, and money. Startup companies can achieve scale quickly because the domestic market is so large. Further, companies are under pressure to automate thereby causing double-digit demand for industrial robots (according to the International Federation of Robotics). Third, the government is strongly behind the move.

Made in China 2025 and 5-Year Plans

Chinese President Xi Jinping has called for “a robot revolution” and initiated the “Made in China 2025” program. More than 1,000 firms and a new robotics association, CRIA (Chinese Robotics Industry Alliance) have emerged (or begun to transition) into robotics to take advantage of the program, according to a 2016 report by the Ministry of Industry and Information Technology. By contrast, according to the same report, the sector was virtually non-existent a decade ago.

Under “Made in China 2025,” and the five-year robot plan launched last April, Beijing is focusing on automating key sectors of the economy including car manufacturing, electronics, home appliances, logistics, and food production. At the same time, the government wants to increase the share of in-country-produced robots to more than 50% by 2020; up from 31% last year.

Robot makers, and companies that automate, are both eligible for subsidies, low-interest loans, tax waivers, rent-free land and other incentives. One such program lured back Chinese engineers working overseas; another oversaw billions of dollars poured into technology parks dedicated to robotics production and related businesses; another encouraged local governments to help regional companies deploy robots in their production processes; and despite its ongoing crackdown on capital outflows, green lights have been given to Chinese companies acquiring Western robotics technology companies.

Many of those acquisitions were reported by The Robot Report during 2016 and are reflected (with little red flags) in the chart reporting the top 15 acquisitions of robotic-related companies:

  1. Midea, a Chinese consumer products manufacturer, acquired KUKA, one of the Big 4 global robot manufacturers
  2. The Kion Group, a predominately Chinese-funded warehousing systems and equipment conglomerate, acquired Dematic, a large European AGV and material handling systems company
  3. KraussMaffei, a big German industrial robots integrator, was acquired by ChemChina
  4. Paslin, a US-based industrial robot integrator, was acquired by Zhejiang Wanfeng Technology, a Chinese industrial robot integrator

China has set goals to be able to make 150,000 industrial robots in 2020; 260,000 in 2025; and 400,000 by 2030. If achieved, the plan should help generate $88 billion over the next decade. China’s stated goal in both their 5-year plan and Made in China 2025 program is to overtake Germany, Japan, and the United States in terms of manufacturing sophistication by 2049, the 100th anniversary of the founding of the People’s Republic of China. To make that happen, the government needs Chinese manufacturers to adopt robots by the millions. It also wants Chinese companies to start producing more of those robots.​

Analysts and Critics

Various research reports are predicting that more than 250,000 industrial pick and place, painting and welding robots will be purchased and deployed in China by 2019. That figure represents more than the total global sales of all types of industrial robots in 2014!

Research firms predicting dramatic growth for the domestic Chinese robotics industry are also predicting very low-cost devices. Their reports are contradicted by academics, roboticists and others who point out that there are so many new robot manufacturing companies in China that none will be able to manufacture many thousand robots per year and thus benefit from scale. Further, many of the components that comprise a robot are intricate and costly, e.g., speed reducers, servo motors and control panels. Consequently these are purchased from Nabtesco, Harmonic Drive, Sumitomo and other Japanese, German and US companies. Although a few of the startups are attempting to make reduction gears and other similar devices, the lack of these component manufacturers in China may put a cap on how low costs can go and on how much can be done in-country for the time being.

“We aim to increase the market share of homegrown servomotors, speed reducers and control panels in China to over 30 percent by 2018 or 2019,” said Qu Xianming, an expert with the National Manufacturing Strategy Advisory Committee, which advises the government on plans to upgrade the manufacturing sector. “By then, these indigenous components could be of high enough quality to be exported to foreign countries,” Qu said in an interview with China Daily. “Once the target is met, it will lay down a strong foundation for Chinese parts makers to expand their presence.”

Regardless, China, with governmental directives and incentives, has become both the world’s biggest buyer of robots and also is growing a very large in-country industry to make and sell robots of all types.

 

The Robot Report now has over 500 Chinese companies in its online directories and on its Global Map

The Robot Report and its research team have been able to identify over 500 companies that make or are directly involved in making robots in China. The CRIA (China Robot Industry Alliance), and other sources, proffer the number to be closer to 800. The Robot Report is limited by our own research capabilities, language translation limitations, and scarcity of information about robotics companies and their websites and contact people in China.

These companies are combined with other global companies – now totaling over 5,300 – in our online directories and plotted on our global map so that you can research by area. You can explore online and filter in a variety of ways.

Use Google’s directional and +/- markers to navigate, enlarge, and hone in on a geographical area of interest (or double click near where you want to enlarge). Click on one of the colored markers to get a pop-up window with the name, type, focus, location and a link to the company’s website.

[NOTE: the map shows a single entry for the company headquarters regardless how many branches, subsidiaries and factory locations that company might have, consequently international companies with factories and service centers in China won’t appear. Further note that The Robot Report’s database doesn’t contain companies that just use robots; it focuses on those involved in making robots.]

The Filter pull-down menu lets you choose any one of the seven major categories:

  1. Industrial robot makers
  2. Service robots used by corporations and governments
  3. Service robots for personal and private use
  4. Integrators
  5. Robotics-related start-up companies
  6. Universities and research labs with special emphasis on robotics
  7. Ancillary businesses providing engineering, software, components, sensors and other products and services to the industry.

In the chart below, 500 Chinese companies are tabulated by their business type and area of focus. Please note that your help would be greatly appreciated by adding to the map and making it as accurate and up-to-date as possible. Please send robotics-related companies that we have missed (or are new) to info@therobotreport.com.

 

Two stars, different fates

Levandowski (right) at MCE 2016. Source: Wikipedia Commons

Andy Rubin, who developed the Android operating system at Google then went on to lead Google through multiple acquisitions into robotics, has launched a new consumer products company. Anthony Levandowski, who, after many years with Google and their autonomous driving project, launched Otto which Uber acquired, was sued by Google, and just got fired by Uber.

People involved in robotics – from the multi-disciplined scientists turned entrepreneurs to all the specialists and other engineers involved in any aspect of the industry of making things robotic – are a relatively small community. Most people know (or know of) most of the others, and get-togethers like ICRA, the IEEE International Conference on Robotics and Automation, being held this week in Singapore, are an opportunity to meet new up-and-coming talent as they present their papers and product ideas and mingle with older, more established players. Two of those players made headline news this week: Rubin, launching Essential, and Levandowski, getting fired.

Andy Rubin

Rubin came to Google in 2005 when they acquired Android and left in 2014 to found an incubator for hardware startups, Playground Global. While at Google Rubin became an SVP of Mobile and Digital content including the open-source smartphone operating system Android and then started Google’s robotics group through a series of acquisitions. Android can be found in more than 2 billion phones, TVs, cars and watches.

2008 Google Developer Day in Japan – Press Conference: Andy Rubin

In 2007, Rubin was developing his own version of a smartphone at Google, also named Android, when Apple launched their iPhone, a much more capable and stylish device. Google’s product was scrapped but their software was marketed to HTC and their phone became Google’s first Android-based phone. The software was similar enough to Apple’s that Steve Jobs was furious and, as reported in Fred Vogelstein’s ‘Dogfight: How Apple and Google Went to War and Started a Revolution,’ called Rubin a “big, arrogant f–k” and “everything [he’s doing] is a f–king rip-off of what we’re doing.”

Jobs had trusted Google’s cofounders, Larry Page and Sergey Brin and Google’s CEO Eric Schmidt who was on Apple’s board. All three had been telling Jobs about Android, but they kept telling him it would be different from the iPhone. He believed them until he actually saw the phone and its software and how similar it was to the iPhone’s, whereupon he insisted Google make a lot of changes and removed Schmidt from Apple’s board. Rubin was miffed and had a sign on his office white board that said “STEVE JOBS STOLE MY LUNCH MONEY.”

Quietly, stealthily, Rubin went about creating “a new kind of company using 21st-century methods to build products for the way people want to live in the 21st century.” That company is Essential and Essential just launched and is taking orders for its new $699 phone and a still-stealthy home assistant to compete with Amazon’s Echo and Google’s Home devices.

Wired calls the new Essential Phone “the anti-iPhone.” The first Phones will ship in June.

Anthony Levandowski

In 2004, Levandowski and a team from UC Berkeley built and entered an autonomous motorcycle into the DARPA Grand Challenge. In 2007 he joined Google to work with Sebastian Thrun on Google Street View. Outside of Google he started a mobile mapping company that experimented with LiDAR technology and another to build a self-driving LiDAR-using a Prius. Google acquired both companies including their IP.

In 2016 Levandowski left Google to found Otto, a company making self-driving kits to retrofit semi-trailer trucks. Just as the kit was launched, Uber acquired Otto and Levandowski became the head of Uber’s driverless car operation in addition to continuing his work at Otto.

Quoting Wikipedia,

According to a February 2017 lawsuit filed by Waymo, the autonomous vehicle research subsidiary of Alphabet Inc, Levandowski allegedly “downloaded 9.7 GB of Waymo’s highly confidential files and trade secrets, including blueprints, design files and testing documentation” before resigning to found Otto.

In March 2017, United States District Judge William Haskell Alsup, referred the case to federal prosecutors after Levandowski exercised his Fifth Amendment right against self-incrimination. In May 2017, Judge Alsup ordered Levandowski to refrain from working on Otto’s LiDAR and required Uber to disclose its discussions on the technology. Levandowski was later fired by Uber for failing to cooperate in an internal investigation.

May 2017 fundings, acquisitions, IPOs and failures

May 2017 had two robotics-related companies get $9.5 billion in funding and 22 others raised $249 million. Acquisitions also continued to be substantial with Toyota Motor’s $260 million acquisition of Bastian Solutions plus three others (where the amounts weren’t disclosed).

Fundings

  1. Didi Chuxing, the Uber of China, raised $5.5 billion in a round led by SoftBank with new investors Silver Lake Kraftwerk joining previous investors SoftBank, China Merchants Bank and Bank of Communications. According to TechCrunch, this latest round brings the total raised by DiDi to about $13 billion. Uber, by comparison, has raised $8.81 billion.
  2. Nvidia Corp, a Santa Clara, CA-based speciality GPU maker, raised $4 billion (representing a 4.9% stake in the company) according to Bloomberg. Nvidia’s newest chips are focused on providing power for deep learning for self-driving vehicles.
  3. ClearMotion, a Woburn, MA automotive technology startup that’s building shock absorbers with robotic, software-driven adaptive actuators for car stability, has raised $100 million in a Series C round led by a group of JP Morgan clients and NEA, Qualcomm Ventures and more.
  4. Echodyne, a Bellevue, WA developer of radar vision technology used in drones and self-driving cars, has raised $29 million in a Series B round led by New Enterprise Associates and joined by Bill Gates, Madrona Venture Group, and others.
  5. DeepMap, a Silicon Valley mapping startup, raised $25 million in a round led by Accel and included GSR Ventures and Andreessen Horowitz.

    “Autonomous vehicles are tempting us with a radically new future. However, this level of autonomy requires a highly sophisticated mapping and localization infrastructure that can handle massive amounts of data. I’m very excited to work with the DeepMap team, who have the requisite expertise in mapping, vision, and large scale operations, as they build the core technology that will fuel the next generation of transportation,” said Martin Casado, general partner at Andreessen Horowitz.

  6. Hesai Photonics Technology, a transplanted Silicon Valley-to-Shanghai sensor startup, raised $16 million in a Series A round led by Pagoda Investment with participation from Grains Valley Venture Capital, Jiangmen Venture Capital and LightHouse Capital Management. Hesai is developing a hybrid LiDAR device for self-driving cars. Hesai has already partnered with a number of autonomous driving technology and car companies including Baidu’s Chinese electric vehicle start-up NIO and self-driving tech firm UiSee.
  7. Abundant Robotics, a Menlo Park, CA-based automated fruit-picking tech developer, raised $10 million in venture funding. GV (Google Ventures) led the round, and was joined by BayWa AG and Tellus Partners. Existing partners Yamaha Motor Company, KPCB Edge, and Comet Labs also participated.
  8. TriLumina Corp., an Albuquerque, NM-based developer of solid-state automotive LiDAR illumination for ADAS and autonomous driving, closed a $9 million equity and debt financing. Backers included new investors Kickstart Seed Fund and existing stakeholders Stage 1 Ventures, Cottonwood Technology Fund, DENSO Ventures and Sun Mountain Capital.
  9. Bowery Farming, a NYC indoor vertical farm startup, raised $7.5 million (in February) in a seed round led by First Round Capital and including Box Group, Homebrew, Flybridge, Red Swan, RRE, Lerer Hippeau Ventures, and Tom Colicchio – a restauranteur and judge on reality cooking show, Top Chef.
  10. Taranis, an Israel-based precision agriculture intelligence platform raised $7.5 million in Series A funding. Finistere Ventures led the round, and was joined by Vertex Ventures. Existing investors Eshbol Investments, Mindset Ventures, OurCrowd, and Eyal Gura participated.
  11. Ceres Imaging, the Oakland, CA aerial imagery and analytics company, raised a $5 million Series A round of funding led by Romulus Capital.
  12. Stanley Robotics, a Paris-based automated valet parking service developer, raised $4 million in funding. Investors included Elaia Partners, Idinvest Partners and Ville de Demain. Stanley’s new parking robot is a mobile car-carrying lift that moves and tightly parks cars in outdoor locations.
  13. AIRY3D Inc, a Canadian start-up in 3D computer vision, raised $3.5 million in a seed round co-led by CRCM Ventures and R7 Partners. Other investors include WI Harper Group, Robert Bosch Venture Capital, Nautilus Venture Partners and several angel investors that are affiliates of TandemLaunch, the Montreal-based incubator that spun out AIRY3D.
  14. SkyX Systems, a Canada-based unmanned aircraft system developer, raised around $3 million in funding from Kuang-Chi Group.
  15. Catalia Health, a San Francisco-based patient care management company applying robotics to improve personal health, raised $2.5 million in funding. Khosla Ventures led the round.
  16. vHive, an Israeli startup developing software to operate autonomous drone fleets, raised $2 million (in April) in an A round led by StageOne VC and several additional private investors.
  17. Vivacity Labs, a London AI tech and sensor startup, raised $2 million from Tracsis, Downing Ventures and the London Co-Investment Fund and was also granted an additional $1.3 million from Innovate UK to create sensors with built-in machine learning to identify individual road users and manage traffic accordingly.
  18. Bluewrist, a Canadian integrator of vision systems, raised around $1.5 million (in February) from Istuary Toronto Capital.
  19. American Robotics, a Boston-based commercial farming drone system and analytics developer, raised $1.1 million in seed funding. Investors included Brain Robotics Capital.
  20. Kubo, a Danish educational robot startup, raised around $1 million from the Danish Growth Fund. Kubo is an educational robot that helps kids learn coding, math, language and music in a screenless, tangible environment.
  21. Zeals, a Japanese startup which produces interaction software for robots such as Palmi and Sota, has closed a $720k investment from Japanese adtech firm FreakOut Holdings.
  22. Kitty Hawk, a San Francisco drone platform startup, raised $600k in seed money in March from The Flying Object VC.
  23. Kraken Sonar, a Newfoundland marine tech startup, raised around $500k from RDC, a provincial Crown corporation responsible for improving Newfoundland and Labrador’s research and development. The funding will be used to develop the ThunderFish program which will combine smart sonar, laser and optical sensors, advanced pressure tolerant battery and thruster technologies and cutting edge artificial intelligence algorithms integrated onboard a cost effective AUV capable of 20,000 foot depths.
  24. Motörleaf, a Canadian ag sensor, communications and software startup, raised an undisclosed amount in a seed round (in March).

Acquisitions

  1. Toyota Motor Corp paid $260 million to acquire Bastian Solutions, a U.S.-based materials handling systems integrator. Toyota is the world’s No. 1 forklift truck manufacturer in terms of global market share. With this acqisition Toyota is making a “full-scale entry” into the North American logistics technology sector and will also use Bastian’s systems to make its own global supply chain more efficient.
  2. Ctrl.Me Robotics, a Hollywood, CA drone startup, was acquired by Snap, Inc. for “an amount less than $1 million.” Ctrl Me developed a system for capturing movie-quality aerial video but was recently winding down its operations. Snap acquired its assets and technology as well as talent. Snap was already using one of Ctrl.me’s products: Spectacles, which captures video for Snap’s mobile app.
  3. Applied Research Associates, Inc. (ARA), an employee-owned scientific research and engineering company, acquired Neya Systems LLC on April 28, 2017. Neya Systems LLC is known for their development of unmanned systems for defense, homeland security, and commercial users. Terms of the deal were not disclosed.
  4. Trimble has acquired Müller-Elektronik and all its subsidiary companies, for an undisclosed amount. Müller is a German manufacturer and integrator of farm implement controls, steering kits and precision farming solutions. The transaction is expected to close in the Q3 2017. Financial terms were not disclosed. Müller was key in the development of the ISOBUS communication protocol found in most tractors and towed implements, which allows one terminal to control several implements and machines, regardless of manufacturer.

IPOs

  1. Gamma 2 Robotics, a security robot maker, launched a $6 million private offering to accredited investors.
  2. Aquabotix, a Fall River, MA-headquartered company, raised $5.5 million from their IPO of UUV (ASX:UUV) on the Australian Securities Exchange (ASX). Aquabotix manufactures commercial and industrial underwater drone/camera systems and has shipped over 350 units worldwide.

Failures

  1. FarmLink LLC
  2. EZ Robotics (CN)

The Wolf: The Hunt Continues shows calculated precision for hacking into an network

The Wolf: The Hunt Continues Starring Christian Slater Presented by HP Studios | HP Source: HP Studios/YouTube

Here’s a video you will want to watch. “The Wolf: The Hunt Continues” is really an ad showing how a hacker can enter a network through an unprotected printer (or robot). Christian Slater stars as the evil hacker.

“There are hundreds of millions of business printers in the world and less than 2% are secure,” said Vikrant Batra, Global Head of Marketing for Printing & Imaging, HP. “Everyone knows that a PC can be hacked, but not a printer.” [Hence the need to inform about how easily a printer can be hacked and the consequences of that.]

Although not related to the recent WannaCry hack which held hundreds of thousands of companies ransom and downloaded millions of personal records before destroying billions more, HP,  this 7-minute terrifying advertisement for securing inconsequential devices dramatizes what can happen if we don’t stay a step ahead of the threats that are out there waiting to happen. As companies attempt to stream and analyze data from their Internet of Things (IoT) sensors and software and from varied pieces of equipment and sensors throughout their facilities, opportunities such as the one described in the HP video will certainly happen.

One that comes to mind is FANUC’s plan to network all its CNCs, robots and peripheral devices and sensors used in automation systems with the goal of optimizing up-time, maintenance schedules and manufacturing profitability. FANUC is collaborating with Cisco, Rockwell and Preferred Networks to craft a secure system which they’ve named FIELD. Let’s hope it works.

Fortune Magazine recently reported about consumer products that spy on their users by companies attempting to learn new business models based on data:

What do a doll, a popular set of headphones, and a sex toy have in common? All three items allegedly spied on consumers, creating legal trouble for their manufacturers.

In the case of We-Vibe, which sells remote-control vibrators, the company agreed to pay $3.75 million in March to settle a class-action suit alleging that it used its app to secretly collect information about how customers used its products. The audio company Bose, meanwhile, is being sued for surreptitiously compiling data—including users’ music-listening histories—from headphones.

For consumers, such incidents can be unnerving. Almost any Internet-connected device—not just phones and computers—can collect data. It’s one thing to know that Google is tracking your queries, but quite another to know that mundane personal possessions may be surveilling you too.

So what’s driving the spate of spying? The development of ever-smaller microchips and wireless radios certainly makes it easy for companies. As the margins on consumer electronics grow ever thinner, you can’t blame companies for investigating new business models based on data, not just on devices.

Aargh!

SoftBank invests $5 billion into Didi Chuxing and $4 billion more in Nvidia

SoftBank, the giant telecom company, is venturing out into the world of robotics and transportation services. DealStreet Asia said that SoftBank is trying to transform itself into the ‘Berkshire Hathaway of the tech industry’ with the recent launch of a $100 billion technology fund.

UPDATED 5/24/17: SoftBank’s acquisition of 4.9% of the outstanding shares of Nvidia Corp.

First SoftBank bought Aldebaran, the maker of the Nao and Romeo robots, and redirected them to produce the Pepper robot which has been sold in the thousands to businesses as a guide, information source and order taker, then bigger partnerships with Foxconn and Alibaba to manufacture and market Pepper and other consumer products, and most recently to establishing the $100 billion technology fund.

Recognizing that the telecom services market has matured, SoftBank is putting their money where they can to participate in the new worlds of robotics and transportation as a service. $5 billion in Didi Chuxing, China’s largest ride-sharing company, is a perfect example.

Didi Chuxing

Didi, which already serves more than 400 million users across China, provides services including taxi hailing, private car-hailing, Hitch (social ride-sharing), DiDi Chauffeur, DiDi Bus, DiDi Test Drive, DiDi Car Rental and DiDi Enterprise Solutions to users in China via a smartphone application.

Tencent, Baidu and Alibaba are big investors — even Apple invested $1 billion.

The transformation of the auto industry into one focused on providing transportation services is a moving target with much news, talent movement, investment and widely-varying forecasts. But all signs show that it is booming and growing.

For more information on this subject, read the views of Chris Urmson, previous CTO of Google’s self-driving car group, in my article entitled: Transportation as a Service: a look ahead.

SoftBank Group Corp. acquired a $4 billion stake in Nvidia Corp. making it the fourth-largest shareholder of the graphics chipmaker.

Nvidia

Nvidia, a gaming chipmaker, has been receiving a lot of media attention for their GPU deep learning AI which they call ‘the next era of computing’ — with the GPU acting as the brain of computers, robots and self-driving cars that can perceive and understand the world around their sensors.

Nvidia recently introduced the NVIDIA Isaac™ robot simulator, which utilizes sophisticated video-game and graphics technologies to train intelligent machines in simulated real-world conditions before they get deployed. The company also introduced a set of robot reference-design platforms that make it faster to build such machines using the NVIDIA Jetson™ platform.

“Robots based on artificial intelligence hold enormous promise for improving our lives, but building and training them has posed significant challenges. NVIDIA is now revolutionizing the robotics industry by applying our deep expertise in simulating the real world so that robots can be trained more precisely, more safely and more rapidly.”

RoboThespian stars in UK play Spillikin, a love story

In a poignant play traveling throughout the UK, a robot is co-star and companion to the wife of the (now deceased) robot builder, with the wife developing early Alzheimer’s. The play explores very human themes about love, death, and disease, all handled extremely sensitively with RoboThespian playing a large role.

Jon Welch, the writer and director, said of the play:

“It’s a story about a robot maker. All of his life he builds robots, but he develops degenerative illness in mid-life and realizes he’s not going to live to remain a companion to his wife. His wife, by now, is developing early Alzheimer’s, so he builds his final creation, his final robot to be a companion to his wife.”

The robot is from Engineered Arts, a 12-year-old UK company that develops an ever expanding range of humanoid and semi-humanoid robots featuring natural human-like movement and advanced social behaviours. RoboThespian, Socibot and Byrun are their most prominent robot creations.

“We have pre-programmed every single thing the robot says and every single thing the robot does — all the moves. There’s about nearly 400 separate queues but they are made up of other files, all stuck together so there’s probably a couple of thousand cues in reality. So the robot will always say the same thing and move the same way, depending on what queue is been triggered at what particular time.”

This promotional video for the play is well worth watching:

Bosch and Nvidia partner to develop AI for self-driving cars

Amongst all the activity in autonomously driven vehicle joint ventures, new R&D facilities, strategic acquisitions (such as Mobileye being acquired by Intel) and booming startup fundings, two big players in the industry, NVIDIA and Bosch, are partnering to develop an AI self-driving car supercomputer.

Bosch CEO Dr Volkmar Denner announced the partnership during his keynote address at Bosch Connected World, in Berlin.

“Automated driving makes roads safer, and artificial intelligence is the key to making that happen,” said Denner. “We are making the car smart. We are teaching the car how to maneuver through road traffic by itself.”

The Bosch AI car computer will use NVIDIA AI PX technology, the upcoming AI car superchip, advertised as the world’s first single-chip processor designed to achieve Level-4 autonomous driving (see ADAS chart). The unprecedented level of performance is necessary to handle the massive amount of computation required for the various tasks self-driving vehicles must perform which include running deep neural nets to sense surroundings, understanding the 3D environment, localizing themselves on an HD map, predicting the behavior and position of other objects, as well as computing car dynamics and a safe path forward.

Source: Frost & Sullivan;VDS Automotive SYS Konferenz 2014/

 

Essentially, the NVIDIA platform enables vehicles to be trained on the complexities of driving, operated autonomously and updated over the air with new features and capabilities. And Bosch, which is the one of the world’s largest auto parts makers, has the Tier 1 credentials to mass-produce this AI-enabled supercomputer for a good portion of the auto industry.

“Self-driving cars is a challenge that can finally be solved with recent breakthroughs in deep learning and artificial intelligence,” said Jen-Hsun Huang, founder and CEO, NVIDIA. “Using DRIVE PX AI car computer, Bosch will build automotive-grade systems for the mass production of autonomous cars. Together we will realize a future where autonomous vehicles make mobility safe and accessible to all.”

Nvidia is also partnering with automakers Audi and Mercedes-Benz.

Bottom line:

“This is the kind of strategic tie-up that lets both partners do what they do best – Nvidia can focus on developing the core AI supercomputing tech, and Bosch can provide relationships and sales operations that offer true scale and reach,” says Darrell Etherington for TechCrunch.

Intel to acquire Mobileye for $15.3 billion

Source: Intel

Intel announced plans to acquire Israel-based Mobileye, a developer of vision technology used in autonomous driving applications, for $15.3 billion. Mobileye share prices jumped from $47 to $61 (the tender offering price is $63.54) on the news, a 30% premium. The purchase marks the largest acquisition of an Israeli hi-tech company ever.

Source: Frost & Sullivan;VDS Automotive SYS Konferenz 2014/

This transaction jumpstarts Intel’s efforts to enter the emerging autonomous driving marketplace, an arena much different than Intel’s present business model. The process to design and bring a chip to market involves multiple levels of safety checks and approvals as well as incorporation into car company design plans – a process that often takes 4 to 5 years – which is why it makes sense to acquire a company already versed in those activities. As can be seen in the Frost & Sullivan chart on the right, we are presently producing cars with Level 2 and Level 3 automated systems. Intel wants to be a strategic partner going forward to fully automated and driverless Level 4 and Level 5 cars.

Mobileye is a pioneer in the development of vision systems for on-board Driving Assistance Systems; providing data for decision making applications such as Mobileye’s Adaptive Cruise Control, Lane Departure Warning, Forward Collision Warning, Headway Monitoring, High Beam Assist and more. Mobileye technology is already included in BMW 5-Series, 6-Series, 7-Series, Volvo S80, XC70 and V70 models, and Buick Lucerne, Cadillac DTS and STS.

Last year, Intel reorganized and created a new Autonomous Driving Division which included strategic partnerships with, and investments in, Delphi, Mobileye and a bunch of smaller companies involved in the chipmaking and sensor process. Thus, with this acquisition, Intel gains the ability to offer automakers a larger package of all of the components they will need as vehicles become autonomous and perhaps gaining, as well, on their competitors in the field: NXP Semiconductors, Freescale Semiconductor, Cypress Semiconductor, and STMicroelectronics, the company that makes Mobileye’s chips.

Mobileye’s newest chip, the EyeQ4, designed for computer vision processing in ADAS applications, is a low-power supercomputer on a chip. The design features are described in this article by Imagination Technology.

Bottom line:

“They’re paying a huge premium in order to catch up, to get into the front of the line, rather than attempt to build from scratch,” said Mike Ramsey, an analyst with technology researcher Gartner in a BloombergTechnology article.

Robotic science may (or may not) help us keep up with the death of bees

Credit: SCAD

Beginning in 2006 beekeepers became aware that their honeybee populations were dying off at increasingly rapid rates. Scientists are also concerned about the dwindling populations of monarch butterflies. Researchers have been scrambling to come up with explanations and an effective strategy to save both insects or replicate their pollination functions in agriculture.

Photo: SCAD

Although the Plan Bee drones pictured above are just one SCAD (Savannah College of Art and Design) student’s concept for how a swarm of drones could handle pollinating an indoor crop, scientists are considering different options for dealing with the crisis, using modern technology to replace living bees with robotic ones.Researchers from the Wyss Institute and the School of Engineering and Applied Sciences at Harvard introduced the first RoboBees in 2013, and other scientists around the world have been researching and designing their solutions ever since.

Honeybees pollinate almost a third of all the food we consume and, in the U.S., account for more than $15 billion worth of crops every year. Apples, berries, cucumbers and almonds rely on bees for their pollination. Butterflies also pollinate, but less efficiently than bees and mostly they pollinate wildflowers.

The National Academy of Sciences said:

“Honey bees enable the production of no fewer than 90 commercially grown crops as part of the large, commercial, beekeeping industry that leases honey bee colonies for pollination services in the United States.

Although overall honey bee colony numbers in recent years have remained relatively stable and sufficient to meet commercial pollination needs, this has come at a cost to beekeepers who must work harder to counter increasing colony mortality rates.”

Florida and California have been hit especially hard by decreasing bee colony populations. In 2006, California produced nearly twice as much honey as the next state. But in 2011, California’s honey production fell by nearly half. The recent severe drought in California has become an additional factor driving both its honey yield and bee numbers down as less rain means less flowers available to pollinate.

In the U.S., the Obama Administration created a task force which developed The National Pollinator Health Strategy plan to:

  • Restore honey bee colony health to sustainable levels by 2025.
  • Increase Eastern monarch butterfly populations to 225 million butterflies by year 2020.
  • Restore or enhance seven million acres of land for pollinators over the next five years.

For this story, I wrote to the EPA specialist for bee pollination asking whether funding was continuing under the Trump Administration or whether the program itself was to be continued. No answer.

Japan’s National Institute of Advanced Industrial Science and Technology scientists have invented a drone that transports pollen between flowers using horsehair coated in a special sticky gel. And scientists at the Universities of Sheffield and Sussex (UK) are attempting to produce the first accurate model of a honeybee brain, particularly those portions of the brain that enable vision and smell. Then they intend to create a flying robot able to sense and act as autonomously as a bee.

Bottom Line:

As novel and technologically interesting as these inventions may be, the metrics will need to be near to the present costs of pollination. Or, as biologist Dave Goulson said to a Popular Science reporter, “Even if bee bots are really cool, there are lots of things we can do to protect bees instead of replacing them with robots.”

Saul Cunningham, of the Australian National University, confirmed that sentiment by showing that today’s concepts are far from being economically feasible:

“If you think about the almond industry, for example, you have orchards that stretch for kilometres and each individual tree can support 50,000 flowers,” he says. “So the scale on which you would have to operate your robotic pollinators is mind-boggling.”

“Several more financially viable strategies for tackling the bee decline are currently being pursued including better management of bees through the use of fewer pesticides, breeding crop varieties that can self-pollinate instead of relying on cross-pollination, and the use of machines to spray pollen over crops.”

May fundings, acquisitions and IPOs

handshake_money_currency_dollar_Euro

UPDATE: June 1, 2016: Forbes wrote today that Toyota is in discussions with Google not only for Boston Dynamics but also for Schaft, the Japanese startup that won the DARPA Robotics Challenge — a two-company sale.

May was another big month for robotics – 13 companies were funded to the tune of $111 million. Four companies were acquired with 2 of the 4 reporting selling prices totaling $422 million. And that’s without the $5.2 billion bid for Kuka by Chinese Midea, or the pending sale of Google’s Boston Dynamics.

The financial pages are lighting up over recent stories about these big-money sales. First there was the $5.2 billion offer by Midea Group, a Chinese appliance manufacturer, for Kuka AG, the Augsburg, Germany-based manufacturer of robots and automated systems. Kuka is one of the Big Four of robot manufacturers. On the day of the bid, Kuka’s stock rose from $84/share to $110 where it’s stayed since.

Then came the announcement by Tech Insider that the Toyota Research Institute is in the final phase of negotiations to acquire Google’s robotics company Boston Dynamics, of Big Dog fame. Boston Dynamics spun out of the MIT Leg Lab in 1992 and worked on various military and DARPA funded research projects until Google’s Andy Rubin acquired the company along with 8 other robotics companies. Boston Dynamics never quite adapted to Google and Google’s push to build a consumer robot, hence their being put on the block in March, 2016.

From Forbes, news of a new fund focusing on robotics: Chrysalix VC, a Vancouver, BC venture capital group focused on alternative energy, has partnered with Dutch robotics commercialization center RoboValley to create a new VC fund focused on robotics. The vehicle is targeting E100 million.

Below are the fundings, acquisitions, IPOs and failures that actually happened in May:

FUNDINGS

  1. Locus Robotics raised $8 million in a Series A funding from existing seed investors. The funds will be used to expand product development and general marketing of Locus’ novel material handling robots. Locus is a Massachusetts-based company founded specifically in answer to Kiva Systems’ robots being taken in house by Amazon and no longer available to non-Amazon clients. Locus’ founder, Bruce Welty is a Kiva-using distribution center owner, who, as a consequence of Amazon’s actions, had no recourse other than to build a company that uses a fleet of robots integrated into current warehouse management systems to provide robotic platforms to carry picked items to a conveyor or to the packing station thereby reducing human walking distances and improving overall picking efficiencies.
  2. Gamaya, a Swiss aerial analytics spin-off from the Swiss EPFL, raised $3.2 million in a Series A funding. Funds will be used to develop their new 40 bands of light hyperspectral imaging sensor and analytics software platform (traditional multi-spectral sensors have 4 bands).
  3. Hortau is a California soil moisture monitoring company which raised $10 million to grow and broaden their new system of networked field sensors, weather stations and control units allowing growers to remotely open and close valves and fire up engines for irrigation from cloud-based management software.
  4. nuTonomy is a Cambridge-based start-up that raised $16 million in a Series A round of funding from a group of Singapore and US VCs. This is in addition to the $3.6 million raised in January which included funds from Ford Chairman Bill Ford. nuTonomy is planning to launch a fleet of autonomous taxis in Singapore by 2019 and begin testing later this year. NuTonomy is using retrofitted Mitsubishi electric cars and plans to add Renault EVs later this year.
  5. Mazor Surgical Technologies, an Israeli company, has sold $11.9 million of their stock, 4% of their shares, to Medtronic, a global medical technology, services, and solutions provider, with a performance agreement to sell another 6% of Mazor shares for up to $20 million. An additional clause of the agreement kicks in if performance milestones are met whereby Mazor can issue an addition 5% of new shares for an additional $20M from Medtronic. Details of the deal are here.
  6. Dedrone GmbH, a German startup whose DroneTracker drone detection platform, raised $10 million in a Series A funding from a series of EU and Silicon Valley VCs. In just 15 months, Dedrone has grown to more than 40 employees and 100 distributors in over 50 countries.
  7. Astrobotic Technology, the CMU spin-off company working on delivering payloads to the moon, raised $2.5 million from Space Angels Network. Astrobotic has 10 projects with governments, companies, universities, non-profits, NASA, and individuals for their first moon mission.
  8. MegaBots, an Oakland, CA entertainment startup, has raised $2.4 million in seed funding to bring robot-fighting to a venue near you. MegaBots plans to use the seed funding to build their robot for the fight against the Japanese team they’ve challenged; and to secure sponsorships, perhaps even a TV contract for a program that tracks the team from building the robots to competing.
  9. Zipline International, a San Francisco startup, raised $800k from UPS and $18 million from Yahoo founder Jerry Yang, Microsoft co-founder Paul Allen and others to develop their small robot airplane designed to carry vaccines, medicine and blood to remote areas where health workers place text orders for what they need.
  10. Cyberhawk Innovations raised $2.9 million in financing to enable UK-based Cyberhawk to expand its commercial development of the drone-captured data inspection market for the oil & gas industry and infrastructure markets.
  11. Eonite Perception, a Silicon Valley vision systems startup, raised $5.25 million in a seed round from multiple Silicon Valley VCs. Eonite is building a 3D mapping and tracking system for the virtual reality marketplace using low latency dense depth sensors.
  12. eyeSight Technologies, an Israeli vision systems startup, received $20 million from a Chinese VC group, for its vision system of sensing, gesture recognition and user awareness to be embedded into consumer products.
  13. AIO Robotics is a Los Angeles startup developing an all-in-one 3D printer scanner with an onboard CAD and modeling system. AIO received an undisclosed amount of seed funding.

ACQUISITIONS

  1. 5D Robotics, a San Diego area integrator of unmanned and mobile robotics using ultra-wide band (5D) communications, acquired Aerial MOB, a drone aerial cinematography startup, for an undisclosed sum. The acquisition has led to the formation of the 5D Aerial division which will provide 3D mapping, photogrammetry, thermal and multi-spectral imagery data to vertical markets including oil and gas, utilities and construction.
  2. Dematic, a global supplier of AGVs and materials handling technology, acquired (in March) NDC Automation, an AGV manufacturer in Australia and New Zealand, for an undisclosed amount.
  3. Voith GmbH, a family-owned German group of industrial and engineering companies, has sold 80% of its industrial services unit to buyout group Triton Partners for $342 million to free up capital for planned investments. Voith has a 25.1% share of Kuka’s stock which, if the $5.2 bn Midea offer passes, will be worth close to 40% more than the share value the day before the offer. According to Forbes, Voith ranks 200th in global family-owned businesses with revenue of $7.5 bn and 43,000 employees.
  4. ChemChina and a group of other investors including Chinese state funds, acquired Germany’s KraussMaffei Automation, an industrial robot integrator and plastics, carbon fiber, and rubber processor, for $1 billion – in January.

IPOs

  • None. Private placements and increased investment from hedge funds, mutual funds and via corporate acquisitions appears to have dried up the robotics IPO pipeline.
  • But Moley Robotics, a UK startup developing a cooking robot, is using the new equity crowd funding rules that passed the FCC last year to offer 2% of their shares via the Seedrs crowd funding site. Details will be released soon to subscribers to the Moley and Seedrs websites.

FAILURES

  • RoboDynamics, a SoCal startup with a stylish mobile telepresence robot named Luna, has gone out of business.

How is Pepper, SoftBank’s emotional robot, doing?

Source: Getty Images
Source: Getty Images

Pepper is a child-height human-shaped robot described as having been designed to be a genuine companion that perceives and acts upon a range of human emotions.

SoftBank, the Japanese telecom giant, acquired Aldebaran Robotics and commissioned the development of Pepper. Subsequently SoftBank joint ventured with Alibaba and Foxconn to form a development, production and marketing entity for the robots. There has been much fanfare about Pepper, particularly about its ability to use its body movement and tone of voice to communicate in a way designed to feel natural and intuitive.

The number of Peppers sold to date is newsworthy. As of today, there are likely close to 10,000 Peppers out in the world. Online sales have been 1,000 units each month for the last seven months with additional sales to businesses such as Nestle for their coffee shops and SoftBank for their telecom stores.

Source: Nestle Japan/YouTube
Source: Nestle Japan/YouTube

At around $1,600 per robot, 10,000 robots equates to $16 million in sales but Peppers are sold on a subscription contract that includes a network data plan and equipment insurance. This costs $360 per month and, over 36 months, brings the total cost of ownership to over $14,000. Consequently many are asking what Peppers are being used for, how they are being perceived, and whether they are useful? Essentially, how is Pepper doing? Does it offer value for money spent?

Two recent videos provide a window into Pepper’s state of development.

FINANCIAL TIMES

In a promotional effort, Pepper and a SoftBank publicity team came to the London offices of the Financial Times for an introduction and visit. This video shows one reporter’s attempt to understand Pepper’s capabilities and interactive abilities.

People in the FT offices were definitely attracted, amused and happy with the initial experience of being introduced to Pepper. They laughed at Peppers failures and patted its head to make it feel better. But, Pepper failed in every way to (1) be a companion, (2) recognize emotional cues, (3) be able to converse reliably and intelligently, and (4) provide any level of service other than first-time entertainment.

MASTERCARD

MasterCard unveiled the first application of their MasterPass digital payment service by a robot. It will be rolled out in Pizza Hut restaurants in Asia on Pepper robot order-takers beginning in Q4 2016. To accentuate the hook-up, MasterCard created this video showing what they hope will be a typical interaction involved in Pepper taking a customer’s order.

Tobias Puehse, vice president, innovation management, Digital Payments & Labs at MasterCard, said of the venture with SoftBank and Pepper bots:

“The app’s goal is to provide consumers with more memorable and personalized shopping experience beyond today’s self-serve machines and kiosks, by combining Pepper’s intelligence with a secure digital payment experience via MasterPass.”

One might ask what happens in a noisy, imperfect, acoustic environment? What does conversing with Pepper really add to a conveniently placed kiosk or tablet? How are Pepper’s emotional capabilities being used in this simple order-taking interaction? What happens if a customer strays from the dialogue the robot expects?

BOTTOM LINE

There’s no doubt that Pepper is an impressive engineering feat and that it is an advertising draw. However the emotion recognition aspects of Pepper didn’t appear to be important in both videos even though that is supposed to be Pepper’s strength. The entertainment value seemed to be what attracted the crowds. This temporary phenomena isn’t likely to persevere over time. In fact, this was shown to be true in China where restaurants began using rudimentary robots as mobile servers and busbots. In the last few months, however, there have been reports of those robots being retired because their entertainment value wore off and their inflexibility as real servers became evident.

The marketing around Pepper may have created expectations that can’t be met with this iteration of the robot. A comparison can be made here to Jibo and the problems it is having meeting deadlines and expectations. Jibo has extended the delivery date – once again – to October 2016 for crowdfunded orders, and early next year for the others.

The connection of Pepper to a telecom provider and the sales it brings in the form of 2 and 3 year data service contracts, can be big business to that provider: SoftBank is the exclusive provider of those data services in Japan. An example of the value of that business can be seen by a surge in share price of Taiwan telecom company Asia Pacific Telecom on news that the company will begin selling Pepper robots in Taiwan.

EU’s Horizon 2020 has funded $179 million in robotics PPPs

Source: European Commission, Europe's Digital Progress Report (EDPR) / Robot Report
Source: European Commission, Europe’s Digital Progress Report (EDPR) / Robot Report

Over the past two years, research in 5G and robotics PPP projects have received the highest funding awards within Horizon 2020, the EU’s research and innovation program.

PPPs are Public-Private Partnerships which align private and public research objectives under one sponsored umbrella and channel those efforts in specifically funded projects.

Of 850 projects involving 3,312 groups receiving $2.7 billion (€2.4 billion) in European Union funding as part of Horizon 2020’s first two years of implementation, the Private Public Partnership (PPP) for 5G accounted for $290 million (€260 million) in funding while Robotics PPPs attracted $213 million (€190 million). The report does not account for private funding coming on top of EU funding.

The most recent 21 robotics projects to receive Horizon 2020 EU funding were detailed in a recent post on Robohub by Sabine Hauert.

SMErobot invention by ABB: Lead-Through-Programming (Image credit: ABB AG)
SMErobot invention by ABB: Lead-Through-Programming (Image credit: ABB AG)

The Partnership for Robotics in Europe (SPARC) is a public-private partnership of 180 companies and research organizations and represents the EU’s strategic effort to strengthen Europe’s global robotics market, with the goal of increasing Europe’s share of that market to 42% (a boost of €4 billion per year). As part of the project, the EU will invest €700 million and industry will provide an additional €2.1 billion. Application areas emphasized by SPARC include: manufacturing, healthcare, home care, agriculture, security, cleaning waste, water and air, transport and entertainment. With €700M in funding from the Commission for 2014 – 2020, and triple that amount from European industry, SPARC is the largest civilian-funded robotics innovation program in the world.

Page 5 of 5
1 3 4 5