News

Page 432 of 532
1 430 431 432 433 434 532

Carnegie Mellon Robot, Art Project To Land on Moon in 2021

Carnegie Mellon Robot, Art Project To Land on Moon in 2021

June 6, 2019

CMU Becomes Space-Faring University With Payloads Aboard Astrobotic Lander

PITTSBURGH—Carnegie Mellon University is going to the moon, sending a robotic rover and an intricately designed arts package that will land in July 2021.

The four-wheeled robot is being developed by a CMU team led by William “Red” Whittaker, professor in the Robotics Institute. Equipped with video cameras, it will be one of the first American rovers to explore the moon’s surface. Although NASA landed the first humans on the moon almost 50 years ago, the U.S. space agency has never launched a robotic lunar rover.

The arts package, called MoonArk, is the creation of Lowry Burgess, space artist and professor emeritus in the CMU School of Art. The eight-ounce MoonArk has four elaborate chambers that contain hundreds of images, poems, music, nano-objects, mechanisms and earthly samples intertwined through complex narratives that blur the boundaries between worlds seen and unseen.

“Carnegie Mellon is one of the world’s leaders in robotics. It’s natural that our university would expand its technological footprint to another world,” said J. Michael McQuade, CMU’s vice president of research. “We are excited to expand our knowledge of the moon and develop lunar technology that will assist NASA in its goal of landing astronauts on the lunar surface by 2024.”

Both payloads will be delivered to the moon by a Peregrine lander, built and operated by Astrobotic Inc., a CMU spinoff company in Pittsburgh. NASA last week awarded a $79.5 million contract to Astrobotic to deliver 14 scientific payloads to the lunar surface, making the July 2021 mission possible. CMU independently negotiated with Astrobotic to hitch a ride on the lander’s first mission.

“CMU robots have been on land, on the sea, in the air, underwater and underground,” said Whittaker, Fredkin University Research Professor and director of the Field Robotics Center. “The next frontier is the high frontier.”

For more than 30 years at the Robotics Institute, Whittaker has led the creation of a series of robots that developed technologies intended for planetary rovers — robots with names such as Ambler, Nomad, Scarab and Andy. And CMU software has helped NASA’s Mars rovers navigate on their own. 

“We’re more than techies — we’re scholars of the moon,” Whittaker said.

The CMU robot headed to the moon is modest in size and form; Whittaker calls it “a shoebox with wheels.” It weighs only a little more than four pounds, but it carries large ambitions. Whittaker sees it as the first of a new family of robots that will make planetary robotics affordable for universities and other private entities.

The Soviet Union put large rovers on the moon fifty years ago, and China has a robot on the far side of the moon now, but these were massive programs affordable only by huge nations. The concept of CMU’s rover is similar to that of CubeSats. These small, inexpensive satellites revolutionized missions to Earth’s orbit two decades ago, enabling even small research groups to launch experiments.

Miniaturization is a big factor in affordability, Whittaker said. Whereas the Soviet robots each weighed as much as a buffalo and China’s rover is the weight of a panda bear, CMU’s rover weighs half as much as a house cat.

The Astrobotic landing will be on the near side of the moon in the vicinity of Lacus Mortis, or Lake of Death, which features a large pit the size of Pittsburgh’s Heinz Field that is of considerable scientific interest. The rover will serve largely as a mobile video platform, providing the first ground-level imagery of the site.

The MoonArk has been assembled by an international team of professionals within the arts, humanities, science and technology communities. Mark Baskinger, associate professor in the CMU School of Design, is co-leading the initiative with Lowry.

The MoonArk team includes CMU students, faculty and alumni who worked with external artists and professionals involved with emerging media, new and ancient technologies, and hybrid processes. The team members hold degrees and faculty appointments in design, engineering, architecture, chemistry, poetry, music composition and visual art, among others. Their efforts have been coordinated by the Frank-Ratchye STUDIO for Creative Inquiry in CMU’s College of Fine Arts.

Baskinger calls the ark and its contents a capsule of life on earth, meant to help illustrate a vital part of the human existence: the arts.

“If this is the next step in space exploration, let’s put that exploration into the public consciousness,” he said. “Why not get people to look up and think about our spot in the universe, and think about where we are in the greater scheme of things?”


Carnegie Mellon University

5000 Forbes Ave.

Pittsburgh, PA 15213

412-268-2900

Fax: 412-268-6929

Contact: Byron Spice                                                                      

           412-268-9068                                                                       

           bspice@cs.cmu.edu

            Pam Wigley

            412-268-1047

            pwigley@andrew.cmu.edu

————————————————————

Press release above was provided to us by Carnegie Mellon University

The post Carnegie Mellon Robot, Art Project To Land on Moon in 2021 appeared first on Roboticmagazine.

2019 Robot Launch startup competition is open!

It’s time for Robot Launch 2019 Global Startup Competition! Applications are now open until September 2nd 6pm PDT. Finalists may receive up to $500k in investment offers, plus space at top accelerators and mentorship at Silicon Valley Robotics co-work space.

Winners in previous years include high profile robotics startups and acquisitions:

2018: Anybotics from ETH Zurich, with Sevensense and Hebi Robotics as runners-up.

2017: Semio from LA, with Appellix, Fotokite, Kinema Systems, BotsAndUs and Mothership Aeronautics as runners up in Seed and Series A categories.

Flexibility of Mobile Robots Supports Lean Manufacturing Initiatives and Continuous Optimizations of Internal Logistics at Honeywell

Three mobile robots from Mobile Industrial Robots (MiR) are helping Honeywell Safety & Productivity Solutions keep its manufacturing processes lean and agile and optimizing workflows by automating the transfer of materials throughout the facility.

#292: Robot Operating System (ROS) & Gazebo, with Brian Gerkey


In this episode, Audrow Nash interviews Brian Gerkey, CEO of Open Robotics about the Robot Operating System (ROS) and Gazebo. Both ROS and Gazebo are open source and are widely used in the robotics community. ROS is a set of software libraries and tools, and Gazebo is a 3D robotics simulator. Gerkey explains ROS and Gazebo and talks about how they are used in robotics, as well as some of the design decisions of the second version of ROS, ROS2.

Brian Gerkey

Brian Gerkey is the CEO of Open Robotics, which seeks to develop and drive the adoption of open source software in robotics. Before Open Robotics, Brian was the Director of Open Source Development at Willow Garage, a computer scientist in the SRI Artificial Intelligence Center, a post-doctoral scholar in Sebastian Thrun‘s group in the Stanford Artificial Intelligence Lab.  Brian did his PhD with Maja Matarić in the USC Interaction Lab.

Links

Piab’s Kenos KCS Gripper

Piab’s Kenos KCS gripper enables a collaborative robot to handle just about anything at any time. Combining Piab's proprietary air-driven COAX vacuum technology with an easily replaceable technical foam that molds itself around any surface or shape, the gripper can be used to safely grip, lift and handle any object. Standard interface (ISO) adapters enable the whole unit to be attached to any cobot type on the market with a body made in a lightweight 3D printed material. Approved by Universal Robots as a UR+ end effector.
Page 432 of 532
1 430 431 432 433 434 532