Page 268 of 520
1 266 267 268 269 270 520

Putting the power of AlphaFold into the world’s hands

When we announced AlphaFold 2 last December, it was hailed as a solution to the 50-year old protein folding problem. Last week, we published the scientific paper and source code explaining how we created this highly innovative system, and today we’re sharing high-quality predictions for the shape of every single protein in the human body, as well as for the proteins of 20 additional organisms that scientists rely on for their research.

Putting the power of AlphaFold into the world’s hands

When we announced AlphaFold 2 last December, it was hailed as a solution to the 50-year old protein folding problem. Last week, we published the scientific paper and source code explaining how we created this highly innovative system, and today we’re sharing high-quality predictions for the shape of every single protein in the human body, as well as for the proteins of 20 additional organisms that scientists rely on for their research.

Underwater robot connects humans’ sight and touch to deep sea

As the underwater robot OceanOneK carefully navigated toward the upper deck railing of the sunken Italian steamship Le Francesco Crispi about 500 m below the Mediterranean's surface this month (roughly a third of a mile), Stanford University roboticist Oussama Khatib felt as though he himself was there.

Using artificial intelligence to train teams of robots to work together

When communication lines are open, individual agents such as robots or drones can work together to collaborate and complete a task. But what if they aren't equipped with the right hardware or the signals are blocked, making communication impossible? University of Illinois Urbana-Champaign researchers started with this more difficult challenge. They developed a method to train multiple agents to work together using multi-agent reinforcement learning, a type of artificial intelligence.

Emergency-response drones to save lives in the digital skies

Uncrewed aircraft in the sky above the headquarters of the Port of Antwerp-Bruges. © Helicus – Geert Vanhandenhove, Rik Van Boxem, 2022

By Gareth Willmer

In a city in the future, a fire breaks out in a skyscraper. An alarm is triggered and a swarm of drones swoops in, surrounds the building and uses antennas to locate people inside, enabling firefighters to go straight to the stricken individuals. Just in the nick of time – no deaths are recorded.

Elsewhere in the city, drones fly back and forth delivering tissue samples from hospitals to specialist labs for analysis, while another rushes a defibrillator to someone who has suffered a suspected cardiac arrest on a football pitch. The patient lives, with the saved minutes proving critical.

At the time of writing, drones have already been used in search-and-rescue situations to save more than 880 people worldwide, according to drone company DJI. Drones are also being used for medical purposes, such as to transport medicines and samples, and take vaccines to remote areas.

Drones for such uses are still a relatively new development, meaning there is plenty of room to make them more effective and improve supporting infrastructure. This is particularly true when it comes to urban environments, where navigation is complex and requires safety regulations.

Flying firefighters

The IDEAL DRONE project developed a system to aid in firefighting and other emergencies to demonstrate the potential for using swarms of uncrewed aerial vehicles (UAVs) in such situations. Equipped with antennas, the drones use a radio-frequency system to detect the location of ‘nodes’ – or tags – worn by people inside a building.

“By knowing how many people are inside the building and where they are located, it will optimise the search-and-rescue operation.”

– Prof Gian Paolo Cimellaro, IDEAL DRONE

Making use of an Italian aircraft hangar, the tests involved pilots on the ground flying three drones around the outside of a building. The idea is that the drones triangulate the position of people inside where their signals intersect, as well as detecting information about their health condition. The details can then be mapped to optimise and accelerate rescue operations, and enhance safety for firefighters by allowing them to avoid searching all over a burning building without knowing where people are.

‘You create a sort of temporary network from outside the building through which you can detect the people inside,’ said Professor Gian Paolo Cimellaro, an engineer at the Polytechnic University of Turin and project lead on IDEAL DRONE.

‘By knowing how many people are inside the building and where they are located, it will optimise the search-and-rescue operation.’

He added: ‘A unique characteristic of this project is that it allows indoor tracking without communication networks such as Wi-Fi or GPS, which might not be available if you are in an emergency like a disaster or post-earthquake situation.’

There are some challenges in terms of accuracy and battery life, while another obvious drawback is that people in the building need to already be wearing trackers.

However, said Prof Cimellaro, current thinking is that this can be unintrusive if tags are incorporated in existing technology that people often already carry such as smartwatches, mobile phones or ID cards. They can also be used by organisations that mandate their use for staff working in hazardous environments, such as factories or offshore oil rigs.

Looking beyond the challenges, Prof Cimellaro thinks such systems could be a reality within five years, with drones holding significant future promise for avoiding ‘putting human lives in danger’.

Medical networks

Another area in which drones can be used to save lives is medical emergencies. This is the focus of the SAFIR-Med project.

Belgian medical drone operator Helicus has established a command-and-control (C2C) centre in Antwerp to coordinate drone flights. The idea is that the C2C automatically creates flight plans using artificial intelligence, navigating within a digital twin – or virtual representation – of the real world. These plans are then relayed to the relevant air traffic authorities for flight authorisation.

‘We foresee drone cargo ports on the rooftops of hospitals, integrated as much as possible with the hospital’s logistical system so that transport can be on demand,’ added Geert Vanhandenhove, manager of flight operations at Helicus.

So far, SAFIR-Med has successfully carried out remote virtual demonstrations, simulations, flights controlled from the C2C at test sites, and other tests such as that of a ‘detect-and-avoid’ system to help drones take evasive action when others are flying in the vicinity.

The next step will be to validate the concepts in real-life demonstrations in several countries, including Belgium, Germany and the Netherlands. The trials envisage scenarios including transfers of medical equipment and tissue samples between hospitals and labs, delivery of a defibrillator to treat a cardiac patient outside a hospital, and transport of a physician to an emergency site by passenger drone.

“We foresee drone cargo ports on the rooftops of hospitals.”

– Geert Vanhandenhove, SAFIR-Med

Additional simulations in Greece and the Czech Republic will show the potential for extending such systems across Europe.

SAFIR-Med is part of a wider initiative known as U-space. It’s co-funded by the Single European Sky Air Traffic Management Research (SESAR) Joint Undertaking which is a public-private effort for safer drone operations under the Digital European Sky.

Making rules

Much of the technology is already there for such uses of drones, says Vanhandenhove. However, he highlights that there are regulatory challenges involved in drone flights in cities, especially with larger models flying beyond visual line of sight (BVLOS). This includes authorisations for demonstrations within SAFIR-Med itself.

‘The fact that this is the first time this is being done is posing significant hurdles,’ he said. ‘It will depend on the authorisations granted as to which scenarios can be executed.’

But regulations are set to open up over time, with European Commission rules facilitating a framework for use of BVLOS UAVs in low-level airspace due to come into force next January.

Vanhandenhove emphasises that the development of more robust drone infrastructure will be a gradual process of learning and improvement. Eventually, he hopes that through well-coordinated systems with authorities, emergency flights can be mobilised in seconds in smart cities of the future. ‘For us, it’s very important that we can get an authorisation in sub-minute time,’ he said.

He believes commercial flights could even begin within a couple of years, though it may not be until post-2025 that widely integrated, robust uncrewed medical systems come into play in cities. ‘It’s about making the logistics of delivering whatever medical treatment faster and more efficient, and taking out as much as possible the constraints and limitations that we have on the route,’ said Vanhandenhove.

Research in this article was funded via the EU’s European Research Council.


This article was originally published in Horizon, the EU Research and Innovation magazine.

Robot dog learns to walk in one hour

A newborn giraffe or foal must learn to walk on its legs as fast as possible to avoid predators. Animals are born with muscle coordination networks located in their spinal cord. However, learning the precise coordination of leg muscles and tendons takes some time. Initially, baby animals rely heavily on hard-wired spinal cord reflexes. While somewhat more basic, motor control reflexes help the animal to avoid falling and hurting themselves during their first walking attempts. The following, more advanced and precise muscle control must be practiced, until eventually the nervous system is well adapted to the young animal's leg muscles and tendons. No more uncontrolled stumbling—the young animal can now keep up with the adults.

Bees’ ‘waggle dance’ may revolutionize how robots talk to each other in disaster zones

Image credit: rtbilder / Shutterstock.com

By Conn Hastings, science writer

Honeybees use a sophisticated dance to tell their sisters about the location of nearby flowers. This phenomenon forms the inspiration for a form of robot-robot communication that does not rely on digital networks. A recent study presents a simple technique whereby robots view and interpret each other’s movements or a gesture from a human to communicate a geographical location. This approach could prove invaluable when network coverage is unreliable or absent, such as in disaster zones.

Where are those flowers and how far away are they? This is the crux of the ‘waggle dance’ performed by honeybees to alert others to the location of nectar-rich flowers. A new study in Frontiers in Robotics and AI has taken inspiration from this technique to devise a way for robots to communicate. The first robot traces a shape on the floor, and the shape’s orientation and the time it takes to trace it tell the second robot the required direction and distance of travel. The technique could prove invaluable in situations where robot labor is required but network communications are unreliable, such as in a disaster zone or in space.

Honeybees excel at non-verbal communication

If you have ever found yourself in a noisy environment, such as a factory floor, you may have noticed that humans are adept at communicating using gestures. Well, we aren’t the only ones. In fact, honeybees take non-verbal communication to a whole new level.

By wiggling their backside while parading through the hive, they can let other honeybees know about the location of food. The direction of this ‘waggle dance’ lets other bees know the direction of the food with respect to the hive and the sun, and the duration of the dance lets them know how far away it is. It is a simple but effective way to convey complex geographical coordinates.

Applying the dance to robots

This ingenious method of communication inspired the researchers behind this latest study to apply it to the world of robotics. Robot cooperation allows multiple robots to coordinate and complete complex tasks. Typically, robots communicate using digital networks, but what happens when these are unreliable, such as during an emergency or in remote locations? Moreover, how can humans communicate with robots in such a scenario?

To address this, the researchers designed a visual communication system for robots with on-board cameras, using algorithms that allow the robots to interpret what they see. They tested the system using a simple task, where a package in a warehouse needs to be moved. The system allows a human to communicate with a ‘messenger robot’, which supervises and instructs a ‘handling robot’ that performs the task.

Robot dancing in practice

In this situation, the human can communicate with the messenger robot using gestures, such as a raised hand with a closed fist. The robot can recognize the gesture using its on-board camera and skeletal tracking algorithms. Once the human has shown the messenger robot where the package is, it conveys this information to the handling robot.

This involves positioning itself in front of the handling robot and tracing a specific shape on the ground. The orientation of the shape indicates the required direction of travel, while the length of time it takes to trace it indicates the distance. This robot dance would make a worker bee proud, but did it work?

The researchers put it to the test using a computer simulation, and with real robots and human volunteers. The robots interpreted the gestures correctly 90% and 93.3% of the time, respectively, highlighting the potential of the technique.

“This technique could be useful in places where communication network coverage is insufficient and intermittent, such as robot search-and-rescue operations in disaster zones or in robots that undertake space walks,” said Prof Abhra Roy Chowdhury of the Indian Institute of Science, senior author on the study. “This method depends on robot vision through a simple camera, and therefore it is compatible with robots of various sizes and configurations and is scalable,” added Kaustubh Joshi of the University of Maryland, first author on the study.


Video credit: K Joshi and AR Chowdury


This article was originally published on the Frontiers blog.

Page 268 of 520
1 266 267 268 269 270 520