Small robots are important tools for the investigation and inspection of, well, small spaces. They can carefully place their steps, allowing them to navigate around obstacles, capabilities larger robots do not always possess. This can enable them to inspect machinery or search through rubble in disaster scenarios that other robots cannot reach. However, due to their size constraints, building small robots that can steer themselves and carry their own power sources is difficult.
New machines can improve conditions for workers and boost industrial productivity.
The manufacturing industry is undergoing significant changes due to the swift advancement of technology and evolving global dynamics.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
In a paper published in Nature, we introduce FunSearch, a method for searching for “functions” written in computer code, and find new solutions in mathematics and computer science. FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in the form of computer code, with an automated “evaluator”, which guards against hallucinations and incorrect ideas.
Food traceability is not just a matter of compliance, it’s also essential for maintaining customer trust and brand reputation.
To effectively assist humans in real-world settings, robots should be able to learn new skills and adapt their actions based on what users require them to do at different times. One way to achieve this would be to design computational approaches that allow robots to learn from human demonstrations, for instance observing videos of a person washing dishes and learning to repeat the same sequence of actions.
Alone at home, your bones creaky due to old age, you crave a cool beverage. You turn to your robot and say, "Please get me a tall glass of water from the refrigerator." Your AI-trained companion obliges. Soon, your thirst is quenched.
Neuroengineer Silvestro Micera has developed advanced technological solutions to help people regain sensory and motor functions that have been lost due to traumatic events or neurological disorders. Until now, he had never before worked on enhancing the human body and cognition with the help of technology.