Page 2 of 272
1 2 3 4 272

Robotics research: How Asia, Europe and America invest – Global Report 2023

Countries around the world invest in robotics to support developments in industry and society. What are the exact targets of robotics research funding programs (R&D) officially driven by governments in Asia, Europe and America today? This has been researched by the International Federation of Robotics and published in the 2023 update paper of “World Robotics R&D Programs”.

© Pixabay

“The 3rd version of World Robotics R&D Programs covers the latest funding developments including updates in 2022,” says Prof. Dr. Jong-Oh Park, Vice-Chairman IFR Research Committee and member of the Executive Board.

The overview shows that the most advanced robotics countries in terms of annual installations of industrial robots – China, Japan, USA, South Korea, Germany – and the EU drive very different R&D strategies:

Robotics R&D programs – officially driven by governments

In China, the “14th Five-Year Plan” for Robot Industry Development, released by the Ministry of Industry and Information Technology (MIIT) in Beijing on 21st December 2021, focuses on promoting innovation. The goal is to make China a global leader for robot technology and industrial advancement. Robotics is included in 8 key industries for the next 5 years. In order to implement national science and technology innovation arrangements, the key special program “Intelligent Robots” was launched under the National Key R&D Plan on 23rd April 2022 with a funding of 43.5 million USD. The recent statistical yearbook “World Robotics” by IFR shows that China reached a robot density of 322 units per 10,000 workers in the manufacturing industry: The country ranks 5th worldwide in 2021 compared to 20th (140 units) in 2018.

In Japan, the “New Robot Strategy” aims to make the country the world´s number one robot innovation hub. More than 930.5 million USD in support has been provided by the Japanese government in 2022. Key sectors are manufacturing (77.8 million USD), nursing and medical (55 million USD), infrastructure (643.2 million USD) and agriculture (66.2 million USD). The action plan for manufacturing and service includes projects such as autonomous driving, advanced air mobility or the development of integrated technologies that will be the core of next-generation artificial intelligence and robots. A budget of 440 million USD was allocated to robotics-related projects in the “Moonshot Research and Development Program” over a period of 5 years from 2020 to 2025. According to the statistical yearbook “World Robotics” by IFR, Japan is the world´s number one industrial robot manufacturer and delivered 45% of the global supply in 2021.

The 3rd Basic Plan on Intelligent Robots of South Korea is pushing to develop robotics as a core industry in the fourth industrial revolution. The Korean government allocated 172.2 million USD in funding for the “2022 Implementation Plan for the Intelligent Robot”. From 2022 to 2024 a total of 7.41 million USD is planned in funding for the “Full-Scale Test Platform Project for Special-Purpose Manned or Unmanned Aerial Vehicles”. The statistical yearbook “World Robotics” showed an all-time high of 1,000 industrial robots per 10,000 employees in 2021. This makes Korea the country with the highest robot density worldwide.

Horizon Europe is the European Union’s key research and innovation framework program with a budget of 94.30 billion USD for seven years (2021-2027). Top targets are: strengthening the EU’s scientific and technological bases, boosting Europe’s innovation capacity, competitiveness and jobs as well as delivering on citizens’ priorities and sustaining socio-economic models and values. The European Commission provides total funding of 198.5 million USD for the robotics-related work program 2021-2022.

Germany´s High-Tech Strategy 2025 (HTS) is the fourth edition of the German R&D and innovation program. The German government will provide around 69 million USD annually until 2026 – a total budget of 345 million USD for five years. As part of the HTS 2025 mission, the program “Shaping technology for the people” was launched. This program aims to use technological change in society as a whole and in the world of work for the benefit of people. Research topics are: digital assistance systems such as data glasses, human-robot-collaboration, exoskeletons to support employees in their physical work, but also solutions for the more flexible organization of work processes or the support of mobile work. According to the report “World Robotics” by IFR, Germany is the largest robot market in Europe – the robot density ranks in 4th place worldwide with 397 units per 10,000 employees.

The National Robotics Initiative (NRI) in the USA was launched for fundamental robotics R&D supported by the US government. The NRI-3.0 program, announced in February 2021, seeks research on integrated robot systems and builds upon the previous NRI programs. The US government supported the NRI-3.0 fund to the sum of 14 million USD in 2021. Collaboration among academics, industry, government, non-profit, and other organizations is encouraged. The “Moon to Mars” project by NASA for example highlights objectives to establish a long-term presence in the vicinity of and on the moon. The projects target research and technology development that will significantly increase the performance of robots to collaboratively support deep space human exploration and science missions. For the Artemis lunar program, the US government is planning to allocate a budget of 35 billion USD from 2020 to 2024. The statistical yearbook “World Robotics” by IFR shows that robot density in the United States rose from 255 units in 2020 to 274 units in 2021. The country ranks 9th in the world. Regarding annual installations of industrial robots, the USA takes 3rd position.

Robot Talk Episode 33 – Interview with Dan Stoyanov

Claire chatted to Professor Dan Stoyanov from University College London all about robotic vision, surgical robotics, and artificial intelligence.

Dan Stoyanov, FREng, FIET, is a Professor at UCL Computer Science holding a Royal Academy of Engineering Chair in Emerging Technologies. He is Director of the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), a large research centre combining engineering and clinical expertise. His research interests are focused on surgical robotics, surgical data science and the development of surgical AI systems for clinical use. He is Chief Scientist at Digital Surgery, and he co-founded Odin Vision Ltd as a UCL spin-out focused on AI in gastroenterology.

When a professor meets a farmer

Robot developments and the study of social processes can happen side-by-side in RoboHouse. Because we feel that technology should learn to look beyond its own horizons, if we aim to make the workplace more attractive. Why are people leaving the jobs they used to love? What’s going on in crucial sectors like healthcare, agriculture and manufacturing?

To explore these questions, we go into the field with scientists and innovators. Under the banner of FRAIM, our new transdisciplinary research centre dedicated to the future of work. What do robot specialists notice when they travel to places where people and robots work together?

Our latest instalment of FRAIM in the Field follows Maria Luce Lupetti as she meets with Henk Verdegaal on a grey November day. Last August Verdegaal, flower bulb farmer in the Netherlands, finally saw what an agricultural robot could do on his lands. The Agbot by developer AgXeed was humming along, managed by a “smart and ready to use autonomy system with a full suite of vehicle peripherals.”

As the Agbot demonstration progressed, flower bulb farmer Henk Verdegaal became more and more convinced of the potential of this particular way of implementing robotics: “I feel this could be deployed for all things related to light ground work. The only issue is: can the system run for enough hours to make it worthwhile financially. That seems hard at the moment.”

Henk Verdegaal experiments with smart technology to reduce his use of pesticides. He expects that systems like Agbot can also reduce his reliance on labour and liberate him from field work, so that he can focus on more important processes. Drones however, have so far failed to impress Verdegaal. Connectivity issues caused the drone to lose its way and communicate poorly with the camera.

Assistant professor Maria Luce Lupetti, specialised in critical design for AI systems at TU Delft, arrives at a sobering insight during FRAIM in the Field: “In a place like a farm there are clear problems like not finding people to drive the truck. So it automatically makes you think: ‘OK, you make it autonomous. You have a clear need for that, the technology is there.’ But there are reasons why people have a hard time finding workers. These problems are systemic. There are financial issues, there are sustainability issues. There is a pressing housing crisis that makes the price of the land rise. A lot of different forces are coming together to influence the work of people on a farm.”

Watch the rest of the series here, or on our youtube channel.


The post When a professor meets a farmer appeared first on RoboHouse.

Special drone collects environmental DNA from trees

Ecologists are increasingly using traces of genetic material left behind by living organisms left behind in the environment, called environmental DNA (eDNA), to catalog and monitor biodiversity. Based on these DNA traces, researchers can determine which species are present in a certain area.

An imitation-relaxation reinforcement learning framework for four-legged robot locomotion

For legged robots to effectively explore their surroundings and complete missions, they need to be able to move both rapidly and reliably. In recent years, roboticists and computer scientists have created various models for the locomotion of legged robots, many of which are trained using reinforcement learning methods.

New robots in Europe can be workers’ best friends

Researchers are ushering in a new way of thinking about robots in the workplace based on the idea of robots and workers as teammates rather than competitors. © BigBlueStudio, Shutterstock

For decades, the arrival of robots in the workplace has been a source of public anxiety over fears that they will replace workers and create unemployment.

Now that more sophisticated and humanoid robots are actually emerging, the picture is changing, with some seeing robots as promising teammates rather than unwelcome competitors.

‘Cobot’ colleagues

Take Italian industrial-automation company Comau. It has developed a robot that can collaborate with – and enhance the safety of – workers in strict cleanroom settings in the pharmaceutical, cosmetics, electronics, food and beverage industries. The innovation is known as a “collaborative robot”, or “cobot”.

Comau’s arm-like cobot, which is designed for handling and assembly tasks, can automatically switch from an industrial to a slower speed when a person enters the work area. This new feature allows one robot to be used instead of two, maximising productivity and protecting workers.

‘It has advanced things by allowing a dual mode of operation,’ said Dr Sotiris Makris, a roboticist at the University of Patras in Greece. ‘You can either use it as a conventional robot or, when it is in collaborative mode, the worker can grab it and move it around as an assisting device.’

Makris was coordinator of the just-completed EU-funded SHERLOCK project, which explored new methods for safely combining human and robot capabilities from what it regarded as an often overlooked research angle: psychological and social well-being.

Creative and inclusive

Robotics can help society by carrying out repetitive, tedious tasks, freeing up workers to engage in more creative activities. And robotic technologies that can collaborate effectively with workers could make workplaces more inclusive, such as by aiding people with disabilities.

“There is increasing competition around the globe, with new advances in robotics.”

– Dr Sotiris Makris, SHERLOCK

These opportunities are important to seize as the structure and the age profile of the European workforce changes. For example, the proportion of 55-to-64-year-olds increased from 12.5% of the EU’s employees in 2009 to 19% in 2021.

Alongside the social dimension, there is also economic benefit from greater industrial efficiency, showing that neither necessarily needs to come at the expense of the other.

‘There is increasing competition around the globe, with new advances in robotics,’ said Makris. ‘That is calling for actions and continuous improvement in Europe.’

Makris cites the humanoid robots being developed by Elon Musk-led car manufacturer Tesla. Wearable robotics, bionic limbs and exoskeleton suits are also being developed that promise to enhance people’s capabilities in the workplace.

Still, the rapidly advancing wave of robotics poses big challenges when it comes to ensuring they are effectively integrated into the workplace and that people’s individual needs are met when working with them. 

Case for SHERLOCK

SHERLOCK also examined the potential for smart exoskeletons to support workers in carrying and handling heavy parts at places such as workshops, warehouses or assembly sites. Wearable sensors and AI were used to monitor and track human movements.

With this feedback, the idea is that the exoskeleton can then adapt to the needs of the specific task while helping workers retain an ergonomic posture to avoid injury.

‘Using sensors to collect data from how the exoskeleton performs allowed us to see and better understand the human condition,’ said Dr Makris. ‘This allowed us to have prototypes on how exoskeletons need to be further redesigned and developed in the future, depending on different user profiles and different countries.’

SHERLOCK, which has just ended after four years, brought together 18 European organisations in multiple countries from Greece to Italy and the UK working on different areas of robotics.

The range of participants enabled the project to harness a wide variety of perspectives, which Dr Makris said was also beneficial in the light of differing national rules on integrating robotics technology.

As a result of the interaction of these robotic systems with people, the software is advanced enough to give direction to ‘future developments on the types of features to have and how the workplace should be designed,’ said Dr Makris.

Old hands, new tools

Another EU-funded project that ended this year, CO-ADAPT, used cobots to help older people navigate the digitalised workplace.

“You find interesting differences in how much the machine and how much the person should do.”

– Prof Giulio Jacucci, CO-ADAPT

The project team developed a cobot-equipped adaptive workstation to aid people in assembly tasks, such as making a phone, car or toy – or, indeed, combining any set of individual components into a finished product during manufacturing. The station can adapt workbench height and lighting to a person’s physical characteristics and visual abilities. It also includes features like eye-tracking glasses to gather information on mental workload.

That brings more insight into what all kinds of people need, said Professor Giulio Jacucci, coordinator of CO-ADAPT and a computer scientist at the University of Helsinki in Finland.

‘You find interesting differences in how much the machine and how much the person should do, as well as how much the machine should try to give guidance and how,’ Jacucci said. ‘This is important work that goes down to the nuts and bolts of making this work.’

Still, cobot-equipped workplaces that can fully tap into and respond to people’s mental states in real-life settings could still be a number of years away, he said.

‘It’s so complex because there’s the whole mechanical part, plus trying to understand people’s status from their psychophysiological states,’ said Prof Jacucci.

Meanwhile, because new technologies can be used in much simpler ways to improve the workplace, CO-ADAPT also explored digitalisation more broadly.

Smart shifts

One area was software that enables ‘smart-shift scheduling’, which arranges duty periods for workers based on their personal circumstances. The approach has been shown to reduce sick leave, stress and sleep disorders among social welfare and health care workers.

‘It’s a fantastic example of how workability improves because we use evidence-based knowledge of how to have well-being-informed schedules,’ said Prof Jacucci.

Focusing on the individual is key to the future of well-integrated digital tools and robotics, he said.

‘Let’s say you have to collaborate with some robot in an assembly task,’ he said. ‘The question is: should the robot be aware of my cognitive and other abilities? And how should we divide the task between the two?’

The basic message from the project is that plenty of room exists to improve and broaden working environments.

‘It shows how much untapped potential there is,’ said Prof Jacucci.


This article was originally published in Horizon, the EU Research and Innovation magazine.

Research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.

Page 2 of 272
1 2 3 4 272