Page 361 of 433
1 359 360 361 362 363 433

Soft actor critic – Deep reinforcement learning with real-world robots

By Tuomas Haarnoja, Vitchyr Pong, Kristian Hartikainen, Aurick Zhou, Murtaza Dalal, and Sergey Levine

We are announcing the release of our state-of-the-art off-policy model-free reinforcement learning algorithm, soft actor-critic (SAC). This algorithm has been developed jointly at UC Berkeley and Google Brain, and we have been using it internally for our robotics experiment. Soft actor-critic is, to our knowledge, one of the most efficient model-free algorithms available today, making it especially well-suited for real-world robotic learning. In this post, we will benchmark SAC against state-of-the-art model-free RL algorithms and showcase a spectrum of real-world robot examples, ranging from manipulation to locomotion. We also release our implementation of SAC, which is particularly designed for real-world robotic systems.

Desired Features for Deep RL for Real Robots

What makes an ideal deep RL algorithm for real-world systems? Real-world experimentation brings additional challenges, such as constant interruptions in the data stream, requirement for a low-latency inference and smooth exploration to avoid mechanical wear and tear on the robot, which set additional requirement for both the algorithm and also the implementation of the algorithm.

Regarding the algorithm, several properties are desirable:

  • Sample Efficiency. Learning skills in the real world can take a substantial amount of time. Prototyping a new task takes several trials, and the total time required to learn a new skill quickly adds up. Thus good sample complexity is the first prerequisite for successful skill acquisition.
  • No Sensitive Hyperparameters. In the real world, we want to avoid parameter tuning for the obvious reason. Maximum entropy RL provides a robust framework that minimizes the need for hyperparameter tuning.
  • Off-Policy Learning. An algorithm is off-policy if we can reuse data collected for another task. In a typical scenario, we need to adjust parameters and shape the reward function when prototyping a new task, and use of an off-policy algorithm allows reusing the already collected data.

Soft actor-critic (SAC), described below, is an off-policy model-free deep RL algorithm that is well aligned with these requirements. In particular, we show that it is sample efficient enough to solve real-world robot tasks in only a handful of hours, robust to hyperparameters and works on a variety of simulated environments with a single set of hyperparameters.

In addition to the desired algorithmic properties, experimentation in the real-world sets additional requirements for the implementation. Our release supports many of these features that we have found crucial when learning with real robots, perhaps the most importantly:

  • Asynchronous Sampling. Inference needs to be fast to minimize delay in the control loop, and we typically want to keep training during the environment resets too. Therefore, data sampling and training should run in independent threads or processes.
  • Stop / Resume Training. When working with real hardware, whatever can go wrong, will go wrong. We should expect constant interruptions in the data stream.
  • Action smoothing. Typical Gaussian exploration makes the actuators jitter at high frequency, potentially damaging the hardware. Thus temporally correlating the exploration is important.

Soft Actor-Critic

Soft actor-critic is based on the maximum entropy reinforcement learning framework, which considers the entropy augmented objective

where $\mathbf{s}_t$ and $\mathbf{a}_t$ are the state and the action, and the expectation is taken over the policy and the true dynamics of the system. In other words, the optimal policy not only maximizes the expected return (first summand) but also the expected entropy of itself (second summand). The trade-off between the two is controlled by the non-negative temperature parameter $\alpha$, and we can always recover the conventional, maximum expected return objective by setting $\alpha=0$. In a technical report, we show that we can view this objective as an entropy constrained maximization of the expected return, and learn the temperature parameter automatically instead of treating it as a hyperparameter.

This objective can be interpreted in several ways. We can view the entropy term as an uninformative (uniform) prior over the policy, but we can also view it as a regularizer or as an attempt to trade off between exploration (maximize entropy) and exploitation (maximize return). In our previous post, we gave a broader overview and proposed applications that are unique to maximum entropy RL, and a probabilistic view of the objective is discussed in a recent tutorial. Soft actor-critic maximizes this objective by parameterizing a Gaussian policy and a Q-function with a neural network, and optimizing them using approximate dynamic programming. We defer further details of soft actor-critic to the technical report. In this post, we will view the objective as a grounded way to derive better reinforcement learning algorithms that perform consistently and are sample efficient enough to be applicable to real-world robotic applications, and—perhaps surprisingly—can yield state-of-the-art performance under the conventional, maximum expected return objective (without entropy regularization) in simulated benchmarks.

Simulated Benchmarks

Before we jump into real-world experiments, we compare SAC on standard benchmark tasks to other popular deep RL algorithms, deep deterministic policy gradient (DDPG), twin delayed deep deterministic policy gradient (TD3), and proximal policy optimization (PPO). The figures below compare the algorithms on three challenging locomotion tasks, HalfCheetah, Ant, and Humanoid, from OpenAI Gym. The solid lines depict the total average return and the shadings correspond to the best and the worst trial over five random seeds. Indeed, soft actor-critic, which is shown in blue, achieves the best performance, and—what’s even more important for real-world applications—it performs well also in the worst case. We have included more benchmark results in the technical report.

Deep RL in the Real World

We tested soft actor-critic in the real world by solving three tasks from scratch without relying on simulation or demonstrations. Our first real-world task involves the Minitaur robot, a small-scale quadruped with eight direct-drive actuators. The action space consists of the swing angle and the extension of each leg, which are then mapped to desired motor positions and tracked with a PD controller. The observations include the motor angles as well as roll and pitch angles and angular velocities of the base. This learning task presents substantial challenges for real-world reinforcement learning. The robot is underactuated, and must therefore delicately balance contact forces on the legs to make forward progress. An untrained policy can lose balance and fall, and too many falls will eventually damage the robot, making sample-efficient learning essentially. The video below illustrates the learned skill. Although we trained our policy only on flat terrain, we then tested it on varied terrains and obstacles. Because soft actor-critic learns robust policies, due to entropy maximization at training time, the policy can readily generalize to these perturbations without any additional learning.


The Minitaur robot (Google Brain, Tuomas Haarnoja, Sehoon Ha, Jie Tan, and Sergey Levine).

Our second real-world robotic task involves training a 3-finger dexterous robotic hand to manipulate an object. The hand is based on the Dynamixel Claw hand, discussed in another post. This hand has 9 DoFs, each controlled by a Dynamixel servo-motor. The policy controls the hand by sending target joint angle positions for the on-board PID controller. The manipulation task requires the hand to rotate a “valve’‘-like object as shown in the animation below. In order to perceive the valve, the robot must use raw RGB images shown in the inset at the bottom right. The robot must rotate the valve so that the colored peg faces the right (see video below). The initial position of the valve is reset uniformly at random for each episode, forcing the policy to learn to use the raw RGB images to perceive the current valve orientation. A small motor is attached to the valve to automate resets and to provide the ground truth position for the determination of the reward function. The position of this motor is not provided to the policy. This task is exceptionally challenging due to both the perception challenges and the need to control a hand with 9 degrees of freedom.


Rotating a valve with a dexterous hand, learned directly from raw pixels (UC Berkeley, Kristian Hartikainen, Vikash Kumar, Henry Zhu, Abhishek Gupta, Tuomas Haarnoja, and Sergey Levine).

In the final task, we trained a 7-DoF Sawyer robot to stack Lego blocks. The policy receives the joint positions and velocities, as well as end-effector force as an input and outputs torque commands to each of the seven joints. The biggest challenge is to accurately align the studs before exerting a downward force to overcome the friction between them.


Stacking Legos with Sawyer (UC Berkeley, Aurick Zhou, Tuomas Haarnoja, and Sergey Levine).

Soft actor-critic solves all of these tasks quickly: the Minitaur locomotion and the block-stacking tasks both take 2 hours, and the valve-turning task from image observations takes 20 hours. We also learned a policy for the valve-turning task without images by providing the actual valve position as an observation to the policy. Soft actor-critic can learn this easier version of the valve task in 3 hours. For comparison, prior work has used PPO to learn the same task without images in 7.4 hours.

Conclusion

Soft actor-critic is a step towards feasible deep RL with real-world robots. Work still needs to be done to scale up these methods to more challenging tasks, but we believe we are getting closer to the critical point where deep RL can become a practical solution for robotic tasks. Meanwhile, you can connect your robot to our toolbox and get learning started!

Acknowledgements

We would like to thank the amazing teams at Google Brain and UC Berkeley—specifically Pieter Abbeel, Abhishek Gupta, Sehoon Ha, Vikash Kumar, Sergey Levine, Jie Tan, George Tucker, Vincent Vanhoucke, Henry Zhu—who contributed to the development of the algorithm, spent long days running experiments, and provided the support and resources that made the project possible.

This article was initially published on the BAIR blog, and appears here with the authors’ permission.

Links:

The metaphysical impact of automation

Earlier this month, I crawled into Dr. Wendy Ju‘s autonomous car simulator to explore the future of human-machine interfaces at CornellTech’s Tata Innovation Center. Dr. Ju recently moved to the Roosevelt Island campus from Stanford University. While in California, the roboticist was famous for making videos capturing people’s reactions to self-driving cars using students disguised as “ghost-drivers” in seat costumes. Professor Ju’s work raises serious questions of the metaphysical impact of docility.

Last January, Toyota Research published a report on the neurological effects of speeding. The team displayed images and videos of sports cars racing down highways that produced spikes in brain activity. The study states,”we hypothesized that sensory inputs during high-speed driving would activate the brain reward system. Humans commonly crave sensory inputs that give rise to pleasant sensations, and abundant evidence indicates that the craving for pleasant sensations is associated with activation within the brain reward system.” The brain reward system is directly correlated to the body’s release of dopamine via the Ventral Tegmental Area. The findings confirmed that higher levels of brain activity on the VTA “were stronger in the fast condition than in the slow condition.” Essentially, speeding (which most drivers engage in regardless of laws) is addicting, as the brain rewards such aggressive behaviors with increased levels of dopamine.

As we relegate more driving to machines, the roads are in danger of becoming highways of strung out dopamine junkies craving new ways to get their fix. Self-driving systems could lead to a marketing battle for in-cabin services pushed by manufacturers, software providers, and media/Internet companies. As an example, Apple filed a patent in August for “an augmented-reality powered windshield system,” This comes two years after Ford filed a similar patent for a display or “system for projecting visual content onto a vehicle’s windscreen.” Both of these filings, along with a handful of others, indicate that the race for capturing rider mindshare will be critical to driving the adoption of robocars. Strategy Analytics estimates this “passenger economy” could generate $7 trillion by 2050. Commuters who spend 250 million hours a year in the car are seen by these marketers as a captive audience for new ways to fill dopamine-deprived experiences.

I predict at next month’s Consumer Electronic Show (CES) in-cabin services will be the lead story coming out of Las Vegas. For example, last week Audi announced a new partnership with Disney to develop innovative ways to entertain passengers. Audi calls the in-cabin experience “The 25th Hour,” which will be further unveiled at CES. Providing a sneak peak into its meaning, CNET interviewed Nils Wollny, head of Audi’s digital business strategy. According to Wollny, the German automobile manufacturer approached Disney 18 months ago to forge a relationship. Wollny explains, “You might be familiar with their Imagineering division [Walt Disney Imagineering], they’re very heavy into building experiences for customers. And they were highly interested in what happens in cars in the future.” He continues, “There will be a commercialization or business approach behind it [for Audi] I’d call it a new media type that isn’t existing yet that takes full advantage of being in a vehicle. We created something completely new together, and it’s very technologically driven.” When illustrating this vision to CNET’s Road Show, Wollny directed the magazine to Audi’s fully autonomous concept car design that “blurs the lines between the outside world and the vehicle’s cabin.” This is accomplished by turning windows into screens with digital overlays that simultaneously show media while the outside world rushes by at 60 miles per an hour.

Self-driving cars will be judged not by speed of their engines, but the comfort of their cabins. Wollny’s description is reminiscent of the marketing efforts of social media companies that were successful in turning an entire generation into screen addicts. Facebook founder Sean Parker, admitted recently that the social network was founded with the strategy of consuming “as much of your time and conscious attention as possible.” To accomplish this devious objective, Parker confesses that the company exploited the “vulnerability in human psychology.” When you like something or comment on a friend’s photo, Parker boasted “we… give you a little dopamine hit.” The mobile economy has birthed dopamine experts such as Ramsay Brown, cofounder of Dopamine Labs, which promises app designers with increased levels of “stickiness” by aligning game play to the player’s cerebral reward system. Using machine learning Brown’s technology monitors each player’s activity by providing the most optimal spike of dopamine. New York Times columnist David Brook’s said it best, “Tech companies understand what causes dopamine surges in the brain and they lace their products with ‘hijacking techniques’ that lure us in and create ‘compulsion loops’.”

The promise of automation is to free humans from dull, dirty, and dangerous chores. The flip side many espouse is that artificial intelligence could make us too reliant on technology, idling society. Already, semi-autonomous systems are being cited as a cause of workplace accidents. Andrew Moll of the United Kingdom’s Chamber of Shipping warned that greater levels of automation by outsourcing decision making to computers has lead to higher levels of maritime collisions. Moll pointed to a recent spat of seafaring incidents,”We have seen increasing integration of ship systems and increasing reliance on computers. He elaborated that “Humans do not make good monitors. We need to set alarms and alerts, otherwise mariners will not do checks.” Moll exclaimed that technology is increasingly making workers lazy as many feel a “lack of meaning and purpose,” and are suffering from mental fatigue which is leading to a rise in workplace injuries. “Seafarers would be tired and demotivated when they get to port,” cautioned Moll. These observations are not isolated to shipping, the recent fatality by Uber’s autonomous taxi program in Arizona faulted safety driver fatigue as one of the main causes for the tragedies. In the Pixar movie WALL-E, the future is so automated that humans have lost all motivation to leave their mobile lounge chairs. To avoid this dystopian vision, successful robotic deployments will have to strike the right balance of augmenting the physical, while providing cerebral stimulation.

To better understand the automation landscape, join us at the next RobotLab event on “Cybersecurity & Machines” with John Frankel of ffVC and Guy Franklin of SOSA on February 12th in New York City, RSVP Today!

#275: Presented work at IROS 2018 (Part 2 of 3), with Robert Lösch, Ali Marjovi and Sophia Sakr


In this episode, Audrow Nash interviews Robert Lösch, Ali Marjovi, and Sophia Sakr about the work they presented at the 2018 International Conference on Intelligent Robots and Systems (IROS) in Madrid, Spain.

Robert Lösch is a PhD Student at Technische Universität Bergakademie Freiberg (TU Freiberg) in Germany, and he speaks on an approach to have robots navigate mining environments. Lösch discusses the challenges of operating in mines, such as humidity and wireless communication, his current platform, as well as future work.

Ali Marjovi is a Post doc at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, and he speaks about on how robots could be used to localize odors, which could be useful for finding explosives or for search-and-rescue. Marjovi discusses how odor localization works, his experimental setup, the challenges of odor localization, and on giving robots a sense of smell.

Sophia Sakr, from Institut des Systèmes Intelligents et de Robotique (ISIR) in France, speaks about a haptic pair of tweezers (designed by Thomas Daunizeau).  She discusses how it works, how this can be used to control other devices, and the future direction of her work.

Links

Elowan: A plant-robot hybrid

Elowan Images (Credit: Harpreet Sareen. License: CC-BY 4.0)

Elowan is a cybernetic lifeform, a plant in direct dialogue with a machine. Using its own internal electrical signals, the plant is interfaced with a robotic extension that drives it toward light.

Plants are electrically active systems. They get bio-electrochemically excited and conduct these signals between tissues and organs. Such electrical signals are produced in response to changes in light, gravity, mechanical stimulation, temperature, wounding, and other environmental conditions.

The enduring evolutionary processes change the traits of an organism based on its fitness in the environment. In recent history, humans domesticated certain plants, selecting the desired species based on specific traits. A few became house plants, while others were made fit for agricultural practice. From natural habitats to micro-climates, the environments for these plants have significantly altered. As humans, we rely on technological augmentations to tune our fitness to the environment. However, the acceleration of evolution through technology needs to move from a human-centric to a holistic, nature-centric view.

Elowan is an attempt to demonstrate what augmentation of nature could mean. Elowan’s robotic base is a new symbiotic association with a plant. The agency of movement rests with the plant based on its own bio-electrochemical signals, the language interfaced here with the artificial world.

These in turn trigger physiological variations such as elongation growth, respiration, and moisture absorption. In this experimental setup, electrodes are inserted into the regions of interest (stems and ground, leaf and ground). The weak signals are then amplified and sent to the robot to trigger movements to respective directions.

Such symbiotic interplay with the artificial could be extended further with exogenous extensions that provide nutrition, growth frameworks, and new defense mechanisms.

About Cyborg Botany
Cyborg Botany is a new, convergent view of interaction design in nature. Our primary means of sensing and display interactions in the environment are through our artificial electronics. However, there are a plethora of such capabilities that already exist in nature. Plants, for example, are active signal networks that are self-powered, self-fabricating, and self-regenerating systems at scale. They have the best kind of capabilities that an electronic device could carry. Instead of building completely discrete systems, the new paradigm points toward using the capabilities that exist in plants (and nature at large) and creating hybrids with our digital world.

Elowan, the robot plant hybrid, is one in a series of such of plant-electronic hybrid experiments.

Project Members:
Harpreet Sareen, Pattie Maes
Credits: Elbert Tiao (Graphics/Video), California Academy of Sciences (Leaf travel video clip)

The Montréal Declaration: Why we must develop AI responsibly

Yoshua Bengio, Université de Montréal

I have been doing research on intelligence for 30 years. Like most of my colleagues, I did not get involved in the field with the aim of producing technological objects, but because I have an interest in the the abstract nature of the notion of intelligence. I wanted to understand intelligence. That’s what science is: Understanding.

However, when a group of researchers ends up understanding something new, that knowledge can be exploited for beneficial or harmful purposes.

That’s where we are — at a turning point where the science of artificial intelligence is emerging from university laboratories. For the past five or six years, large companies such as Facebook and Google have become so interested in the field that they are putting hundreds of millions of dollars on the table to buy AI firms and then develop this expertise internally.

The progression in AI has since been exponential. Businesses are very interested in using this knowledge to develop new markets and products and to improve their efficiency.

So, as AI spreads in society, there is an impact. It’s up to us to choose how things play out. The future is in our hands.

Killer robots, job losses

From the get-go, the issue that has concerned me is that of lethal autonomous weapons, also known as killer robots.

While there is a moral question because machines have no understanding of the human, psychological and moral context, there is also a security question because these weapons could destabilize the world order.

Another issue that quickly surfaced is that of job losses caused by automation. We asked the question: Why? Who are we trying to bring relief to and from what? The trucker isn’t happy on the road? He should be replaced by… nobody?

We scientists seemingly can’t do much. Market forces determine which jobs will be eliminated or those where the workload will be lessened, according to the economic efficiency of the automated replacements. But we are also citizens who can participate in a unique way in the social and political debate on these issues precisely because of our expertise.

Computer scientists are concerned with the issue of jobs. That is not because they will suffer personally. In fact, the opposite is true. But they feel they have a responsibility and they don’t want their work to potentially put millions of people on the street.

Revising the social safety net

So strong support exists, therefore, among computer scientists — especially those in AI — for a revision of the social safety net to allow for a sort of guaranteed wage, or what I would call a form of guaranteed human dignity.

The objective of technological innovation is to reduce human misery, not increase it.

It is also not meant to increase discrimination and injustice. And yet, AI can contribute to both.

Discrimination is not so much due, as we sometimes hear, to the fact AI was conceived by men because of the alarming lack of women in the technology sector. It is mostly due to AI leading on data that reflects people’s behaviour. And that behaviour is unfortunately biased.

In other words, a system that relies on data that comes from people’s behaviour will have the same biases and discrimination as the people in question. It will not be “politically correct.” It will not act according to the moral notions of society, but rather according to common denominators.

Society is discriminatory and these systems, if we’re not careful, could perpetuate or increase that discrimination.

There could also be what is called a feedback loop. For example, police forces use this kind of system to identify neighbourhoods or areas that are more at-risk. They will send in more officers… who will report more crimes. So the statistics will strengthen the biases of the system.

The good news is that research is currently being done to develop algorithms that will minimize discrimination. Governments, however, will have to bring in rules to force businesses to use these techniques.

Saving lives

There is also good news on the horizon. The medical field will be one of those most affected by AI — and it’s not just a matter of saving money.

Doctors are human and therefore make mistakes. So the more we develop systems with more data, fewer mistakes will occur. Such systems are more precise than the best doctors. They are already using these tools so they don’t miss important elements such as cancerous cells that are difficult to detect in a medical image.

There is also the development of new medications. AI can do a better job of analyzing the vast amount of data (more than what a human would have time to digest) that has been accumulated on drugs and other molecules. We’re not there yet, but the potential is there, as is more efficient analysis of a patient’s medical file.

We are headed toward tools that will allow doctors to make links that otherwise would have been very difficult to make and will enable physicians to suggest treatments that could save lives.

The chances of the medical system being completely transformed within 10 years are very high and, obviously, the importance of this progress for everyone is enormous.

I am not concerned about job losses in the medical sector. We will always need the competence and judgment of health professionals. However, we need to strengthen social norms (laws and regulations) to allow for the protection of privacy (patients’ data should not be used against them) as well as to aggregate that data to enable AI to be used to heal more people and in better ways.

The solutions are political

Because of all these issues and others to come, the Montréal Declaration for Responsible Development of Artificial Intelligence is important. It was signed Dec. 4 at the Society for Arts and Technology in the presence of about 500 people.

It was forged on the basis of vast consensus. We consulted people on the internet and in bookstores and gathered opinion in all kinds of disciplines. Philosophers, sociologists, jurists and AI researchers took part in the process of creation, so all forms of expertise were included.

There were several versions of this declaration. The first draft was at a forum on the socially responsible development of AI organized by the Université de Montréal on Nov. 2, 2017.

That was the birthplace of the declaration.

Its goal is to establish a certain number of principles that would form the basis of the adoption of new rules and laws to ensure AI is developed in a socially responsible manner. Current laws are not always well adapted to these new situations.

And that’s where we get to politics.

The abuse of technology

Matters related to ethics or abuse of technology ultimately become political and therefore belong in the sphere of collective decisions.

How is society to be organized? That is political.

What is to be done with knowledge? That is political.

I sense a strong willingness on the part of provincial governments as well as the federal government to commit to socially responsible development.

Because Canada is a scientific leader in AI, it was one of the first countries to see all its potential and to develop a national plan. It also has the will to play the role of social leader.

Montréal has been at the forefront of this sense of awareness for the past two years. I also sense the same will in Europe, including France and Germany.

Generally speaking, scientists tend to avoid getting too involved in politics. But when there are issues that concern them and that will have a major impact on society, they must assume their responsibility and become part of the debate.

And in this debate, I have come to realize that society has given me a voice — that governments and the media were interested in what I had to say on these topics because of my role as a pioneer in the scientific development of AI.

So, for me, it is now more than a responsibility. It is my duty. I have no choice.The Conversation

Yoshua Bengio, Professeur titulaire, Département d’informatique et de recherche opérationnelle, Université de Montréal

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Inside “The Laughing Room”

interactive installation at Cambridge Public Library, was shown live on monitors at Hayden Library and streamed online.
Still photos courtesy of metaLAB (at) Harvard.

By Brigham Fay

“The Laughing Room,” an interactive art installation by author, illustrator, and MIT graduate student Jonathan “Jonny” Sun, looks like a typical living room: couches, armchairs, coffee table, soft lighting. This cozy scene, however, sits in a glass-enclosed space, flanked by bright lights and a microphone, with a bank of laptops and a video camera positioned across the room. People wander in, take a seat, begin chatting. After a pause in the conversation, a riot of canned laughter rings out, prompting genuine giggles from the group.

Presented at the Cambridge Public Library in Cambridge, Massachusetts, Nov. 16-18, “The Laughing Room” was an artificially intelligent room programmed to play an audio laugh track whenever participants said something that its algorithm deemed funny. Sun, who is currently on leave from his PhD program within the MIT Department of Urban Studies and Planning, is an affiliate at the Berkman Klein Center for Internet and Society at Harvard University, and creative researcher at the metaLAB at Harvard, created the project to explore the increasingly social and cultural roles of technology in public and private spaces, users’ agency within and dependence on such technology, and the issues of privacy raised by these systems. The installations were presented as part of ARTificial Intelligence, an ongoing program led by MIT associate professor of literature Stephanie Frampton that fosters public dialogue about the emerging ethical and social implications of artificial intelligence (AI) through art and design.

Setting the scene

“Cambridge is the birthplace of artificial intelligence, and this installation gives us an opportunity to think about the new roles that AI is playing in our lives every day,” said Frampton. “It was important to us to set the installations in the Cambridge Public Library and MIT Libraries, where they could spark an open conversation at the intersections of art and science.”

“I wanted the installation to resemble a sitcom set from the 1980s–a private, familial space,” said Sun. “I wanted to explore how AI is changing our conception of private space, with things like the Amazon Echo or Google Home, where you’re aware of this third party listening.”

“The Control Room,” a companion installation located in Hayden Library at MIT, displayed a live stream of the action in “The Laughing Room,while another monitor showed the algorithm evaluating people’s speech in real time. Live streams were also shared online via YouTube and Periscope. “It’s an extension of the sitcom metaphor, the idea that people are watching,” said Sun. The artist was interested to see how people would act, knowing they had an audience. Would they perform for the algorithm? Sun likened it to Twitter users trying to craft the perfect tweet so it will go viral.

Programming funny

“Almost all machine learning starts from a dataset,” said Hannah Davis, an artist, musician, and programmer who collaborated with Sun to create the installation’s algorithm. She described the process at an “Artists Talk Back” event held Saturday, Nov. 17, at Hayden Library. The panel discussion included Davis; Sun; Frampton; collaborator Christopher Sun, research assistant Nikhil Dharmaraj, Reinhard Engels, manager of technology and innovation at Cambridge Public Library, Mark Szarko, librarian at MIT Libraries, and Sarah Newman, creative researcher at the metaLAB. The panel was moderated by metaLAB founder and director Jeffrey Schnapp.

Davis explained how, to train the algorithm, she scraped stand-up comedy routines from YouTube, selecting performances by women and people of color to avoid programming misogyny and racism into how the AI identified humor. “It determines what is the setup to the joke and what shouldn’t be laughed at, and what is the punchline and what should be laughed at,” said Davis. Depending on how likely something is to be a punchline, the laugh track plays at different intensities.

Fake laughs, real connections

Sun acknowledged that the reactions from “The Laughing Room” participants have been mixed: “Half of the people came out saying ‘that was really fun,’” he said. “The other half said ‘that was really creepy.’”

That was the impression shared by Colin Murphy, a student at Tufts University who heard about the project from following Sun on Twitter: “This idea that you are the spectacle of an art piece, that was really weird.”

“It didn’t seem like it was following any kind of structure,” added Henry Scott, who was visiting from Georgia. “I felt like it wasn’t laughing at jokes, but that it was laughing at us. The AI seems mean.”

While many found the experience of “The Laughing Room” uncanny, for others it was intimate, joyous, even magical.

“There’s a laughter that comes naturally after the laugh track that was interesting to me, how it can bring out the humanness,” said Newman at the panel discussion. “The work does that more than I expected it to.”

Frampton noted how the installation’s setup also prompted unexpected connections: “It enabled strangers to have conversations with each other that wouldn’t have happened without someone listening.”

Continuing his sitcom metaphor, Sun described these first installations as a “pilot,” and is looking forward to presenting future versions of “The Laughing Room.” He and his collaborators will keep tweaking the algorithm, using different data sources, and building on what they’ve learned through these installations. “The Laughing Room” will be on display in the MIT Wiesner Student Art Gallery in May 2019, and the team is planning further events at MIT, Harvard, and Cambridge Public Library throughout the coming year.

“This has been an extraordinary collaboration and shown us how much interest there is in this kind of programming and how much energy can come from using the libraries in new ways,” said Frampton.

“The Laughing Room” and “The Control Room” were funded by the metaLAB (at) Harvard, the MIT De Florez Fund for Humor, the Council of the Arts at MIT, and the MIT Center For Art, Science and Technology and presented in partnership with the Cambridge Public Library and the MIT Libraries.

Waymo soft launches in Phoenix, but…

Waymo car drives in Tempe

Waymo announced today they will begin commercial operations in the Phoenix area under the name “Waymo One.” Waymo has promised that it would happen this year, and it is a huge milestone, but I can’t avoid a small bit of disappointment.

Regular readers will know I am a huge booster of Waymo, not simply because I worked on that team in its early years, but because it is clearly the best by every metric we know. However, this pilot rollout is also quite a step down from what was anticipated, though for sensible reasons.

  1. At first, it is only available to the early rider program members. In fact, it’s not clear that this is any different from what they had before, other than it is more polished and there is a commercial charging structure (not yet published.)
  2. Vehicles will continue to operate with safety drivers.

Other companies — including Waymo, Uber, Lyft and several others — have offered limited taxi services with safety drivers. This service is mainly different in its polish and level of development — or at least that’s all we have been told. They only say they “hope” to expand it to people outside the early rider program soon.

In other words, Waymo has missed the target it set of a real service in 2018. It was a big, hairy audacious target, so there is no shame or surprise in missing it, and it may not be missed by much.

There is a good reason for missing the target. The Uber fatality, right in that very operation area, has everybody skittish. The public. Developers. Governments. It used up the tolerance the public would normally have for mistakes. Waymo can’t take the risk of a mistake, especially in Phoenix, especially now, and especially if it is seen it came about because they tried to go too fast, or took new risks like dropping safety drivers.

I suspect at Waymo they had serious talks about not launching in Phoenix, in spite of the huge investment there. But in the end, changing towns may help, but not enough. Everybody is slowed down by this. Even an injury-free accident that could have had an injury will be problematic — and the truth is, as the volume of service increases, that’s coming.

It was terribly jarring for me to watch Waymo’s introduction video. I set it to play at one minute, where they do the big reveal and declare they are “Introducing the self driving service.”

The problem? The car is driving down N. Mill Avenue in Tempe, the road on which Uber killed Elaine Herzberg, about 1,100 feet from the site of her death. Waymo assures me that this was entirely unintentional — and those who live outside the area or who did not study the accident may not recognize it — but it soured the whole launch for me.

Page 361 of 433
1 359 360 361 362 363 433